|
(Tags: New redirect, Rollback) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect[[2024 AMC 10A Problems/Problem 7]] |
− | Equilateral triangle <math>ABC</math> is partitioned into six smaller equilateral triangles and one smaller regular hexagon, as shown below. If the regular hexagon has area <math>12</math>, what is the area of <math>\triangle ABC</math>?
| |
− | | |
− | <asy>
| |
− | import graph; size(4.5cm);
| |
− | real labelscalefactor = 0.5; /* changes label-to-point distance */
| |
− | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
| |
− | pen dotstyle = black; /* point style */
| |
− | fill((-3.46, 6)--(-2.6, 6.5)--(-1.73, 6)--(-1.73, 5)--(-2.6, 4.5)--(-3.46, 5)--cycle, lightgrey);
| |
− | /* draw figures */
| |
− | draw((-3.4641016151377544,6)--(-4.330127018922193,5.5));
| |
− | draw((-4.330127018922193,5.5)--(-3.4641016151377544,5));
| |
− | draw((-3.4641016151377544,5)--(-3.4641016151377544,6));
| |
− | draw((-3.4641016151377544,5)--(-2.598076211353316,4.5));
| |
− | draw((-2.598076211353316,4.5)--(-1.7320508075688772,5));
| |
− | draw((-1.7320508075688772,5)--(-1.7320508075688772,6));
| |
− | draw((-1.7320508075688772,6)--(-2.598076211353316,6.5));
| |
− | draw((-2.598076211353316,6.5)--(-3.4641016151377544,6));
| |
− | draw((-4.330127018922193,5.5)--(-4.330127018922193,3.5));
| |
− | draw((-4.330127018922193,3.5)--(-2.598076211353316,4.5));
| |
− | draw((-1.7320508075688772,5)--(-1.7320508075688772,2));
| |
− | draw((-1.7320508075688772,2)--(-4.330127018922193,3.5));
| |
− | draw((-1.7320508075688772,6)--(1.7320508075688772,4));
| |
− | draw((1.7320508075688772,4)--(-1.7320508075688772,2));
| |
− | draw((-4.330127018922193,5.5)--(-4.330127018922193,7.5));
| |
− | draw((-4.330127018922193,7.5)--(-2.598076211353316,6.5));
| |
− | draw((-4.330127018922193,3.5)--(-4.330127018922193,0.5));
| |
− | draw((-4.330127018922193,0.5)--(-1.7320508075688772,2));
| |
− | /*
| |
− | dot((-3.4641016151377544,6),dotstyle);
| |
− | dot((-4.330127018922193,5.5),dotstyle);
| |
− | dot((-3.4641016151377544,5),dotstyle);
| |
− | dot((-2.598076211353316,4.5),dotstyle);
| |
− | dot((-1.7320508075688772,5),dotstyle);
| |
− | dot((-1.7320508075688772,6),dotstyle);
| |
− | dot((-2.598076211353316,6.5),dotstyle);
| |
− | dot((-4.330127018922193,3.5),dotstyle);
| |
− | dot((-1.7320508075688772,2),dotstyle);
| |
− | */
| |
− | dot((1.7320508075688772,4),dotstyle);
| |
− | label("$A$", (1.8087225843418686,4), E);
| |
− | dot((-4.330127018922193,7.5),dotstyle);
| |
− | label("$B$", (-4.266904757984109,7.678590535956637), NW);
| |
− | dot((-4.330127018922193,0.5),dotstyle);
| |
− | label("$C$", (-4.266904757984109,0.6655806893860435), SW * 2.5);
| |
− | label("$12$", (-2.6, 5.5));
| |
− | </asy>
| |
− | | |
− | <math>\textbf{(A)}~ 72 \qquad \textbf{(B)}~ 84 \qquad \textbf{(C)}~ 98 \qquad \textbf{(D)}~ 128 \qquad \textbf{(E)}~ 147</math>
| |
− | | |
− | ==Solution==
| |
− | Let the side length of the regular hexagon be <math>s</math>. There are the equivalent of seven equilateral triangles of side length <math>s</math>, two of side <math>2s</math>, two of side <math>3s</math>, and one of side <math>4s</math>. Let <math>X</math> be the area of the entire figure so that <cmath>\frac{X}{12} = \frac{7s^{2} + 2(2s)^{2} + 2(3s)^{2} + (4s)^{2}}{6s^{2}} =\frac{7 + 8 + 18 + 16}{6} = \frac{49}{6}.</cmath> Solving gives <math>X = \boxed{\textbf{(C)}~98}</math>.
| |
− | | |
− | ==See also==
| |
− | {{AMC12 box|year=2024|ab=A|num-b=5|num-a=7}}
| |
− | {{MAA Notice}}
| |