Difference between revisions of "1985 OIM Problems/Problem 6"
(solution) |
|||
Line 6: | Line 6: | ||
== Solution == | == Solution == | ||
− | {{ | + | Drop an altitude from <math>A</math>, and let the intersection be <math>M</math>. Drop another perpendicular from <math>O</math> to <math>BC</math>, and let this intersection be <math>N</math>. Then notice that <math>\triangle AMD\sim\triangle OND</math>. Let <math>T</math> be the area of <math>\triangle ABC</math>; then <math>AM=\frac{2T}{a}</math>. By definition, <math>AO=r</math>. Let <math>AD=x</math>; finally, by definition, <math>ON</math> is the perpendicular bisector of <math>\overline{BC}</math>, so by the [[Pythagorean Theorem]], |
+ | <cmath>ON^2=OB^2-BN^2</cmath> | ||
+ | But <math>OB</math> is a radius and thus is equal to <math>r</math> (hence <math>OD=x-r</math> below), and <math>BN=\frac{1}{2}a</math> from the perpendicular bisector, so | ||
+ | <cmath>ON=\sqrt{r^2-\frac{1}{4}a^2}</cmath> | ||
+ | Then, by similarity, | ||
+ | <cmath>\frac{AM}{AD}=\frac{ON}{OD}</cmath> | ||
+ | <cmath>\iff\frac{\frac{2T}{a}}{x}=\frac{\sqrt{r^2-\frac{1}{4}a^2}}{x-r}</cmath> | ||
+ | <cmath>\iff \frac{ax}{2T}=\frac{x-r}{\sqrt{r^2-\frac{1}{4}a^2}}</cmath> | ||
+ | <cmath>\iff x\left(\frac{a}{2T}-\frac{1}{\sqrt{r^2-\frac{1}{4}a^2}}\right)=-\frac{r}{\sqrt{r^2-\frac{1}{4}a^2}}</cmath> | ||
+ | <cmath>\iff x\left(1-\frac{a\sqrt{r^2-\frac{1}{4}a^2}}{2T}\right)=r</cmath> | ||
+ | <cmath>\iff x=\frac{2Tr}{2T-a\sqrt{r^2-\frac{1}{4}a^2}}</cmath> | ||
+ | <cmath>\iff \frac{1}{x}=\frac{2T-a\sqrt{r^2-\frac{1}{4}a^2}}{2Tr}=\frac{1}{r}-\frac{a\sqrt{r^2-\frac{1}{4}a^2}}{2Tr}</cmath> | ||
+ | Then we must prove that | ||
+ | <cmath>\frac{3}{r}-\frac{a\sqrt{r^2-\frac{1}{4}a^2}}{2Tr}-\frac{b\sqrt{r^2-\frac{1}{4}b^2}}{2Tr}-\frac{c\sqrt{r^2-\frac{1}{4}c^2}}{2Tr}=\frac{2}{r}</cmath> | ||
+ | which is equivalent to | ||
+ | <cmath>\iff\sum_\text{cyc}\frac{a\sqrt{r^2-\frac{1}{4}a^2}}{2Tr}=\frac{1}{r}</cmath> | ||
+ | or | ||
+ | <cmath>\iff\sum_\text{cyc}a\sqrt{4r^2-a^2}=4T</cmath> | ||
+ | But we note that <math>a=2r\sin\alpha</math> by the Extended [[Law of Sines]], so substituting: | ||
+ | <cmath>\iff\sum_\text{cyc}a\sqrt{4r^2-4r^2\sin^2\alpha}=\sum_\text{cyc}a\sqrt{4r(1-\sin^2\alpha)}=\sum_\text{cyc}a\sqrt{4r^2\cos^2\alpha}=\sum_\text{cyc}2ar\cos\alpha=4T</cmath> | ||
+ | with the last equality coming from noticing that <math>\cos\alpha</math> is nonnegative over <math>\alpha\in[0,\pi]</math>. Thus, | ||
+ | <cmath>\iff\sum_\text{cyc}a\cos\alpha=\frac{2T}{r}</cmath> | ||
+ | But from the [[Law of Cosines]], <math>\cos\alpha=\frac{b^2+c^2-a^2}{2bc}</math>, so | ||
+ | <cmath>\iff\sum_\text{cyc}a\left(\frac{b^2+c^2-a^2}{2bc}\right)=\frac{2T}{r}</cmath> | ||
+ | <cmath>\iff\sum_\text{cyc}a^2(b^2+c^2-a^2)=\frac{4abcT}{r}</cmath> | ||
+ | Additionally, <math>T=\frac{abc}{4r}</math>, and expanding the left-hand side: | ||
+ | <cmath>\iff2(a^2b^2+b^2c^2+c^2a^2)-a^4-b^4-c^4=16T^2=16s(s-a)(s-b)(s-c)=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)</cmath> | ||
+ | using [[Heron's Formula]]. Expanding the right-hand side yields the conclusion. | ||
+ | |||
+ | ~ [https://artofproblemsolving.com/wiki/index.php/User:Eevee9406 eevee9406] | ||
== See also == | == See also == | ||
https://www.oma.org.ar/enunciados/ibe1.htm | https://www.oma.org.ar/enunciados/ibe1.htm |
Latest revision as of 16:41, 19 April 2025
Problem
Given triangle , we consider the points
,
, and
of lines
,
, and
respectively. If lines
,
, and
all pass through the center
of the circumference of triangle
, which radius is
, prove:
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Drop an altitude from , and let the intersection be
. Drop another perpendicular from
to
, and let this intersection be
. Then notice that
. Let
be the area of
; then
. By definition,
. Let
; finally, by definition,
is the perpendicular bisector of
, so by the Pythagorean Theorem,
But
is a radius and thus is equal to
(hence
below), and
from the perpendicular bisector, so
Then, by similarity,
Then we must prove that
which is equivalent to
or
But we note that
by the Extended Law of Sines, so substituting:
with the last equality coming from noticing that
is nonnegative over
. Thus,
But from the Law of Cosines,
, so
Additionally,
, and expanding the left-hand side:
using Heron's Formula. Expanding the right-hand side yields the conclusion.