Difference between revisions of "Ceva's Theorem/Problems"

(Redirected page to Ceva's theorem/Problems)
(Tag: New redirect)
(Tag: Removed redirect)
 
Line 1: Line 1:
#REDIRECT[[Ceva's theorem/Problems]]
+
== Introductory ==
 +
 
 +
===Problem===
 +
 
 +
Suppose <math>AB, AC</math>, and <math>BC</math> have lengths <math>13, 14</math>, and <math>15</math>, respectively.  If <math>\frac{AF}{FB} = \frac{2}{5}</math> and <math>\frac{CE}{EA} = \frac{5}{8}</math>,  find <math>BD</math> and <math>DC</math>.
 +
===Solution===
 +
 
 +
If <math>BD = x</math> and <math>DC = y</math>, then <math>10x = 40y</math>, and <math>{x + y = 15}</math>.  From this, we find <math>x = 12</math> and <math>y = 3</math>.
 +
 
 +
== Intermediate ==
 +
 
 +
=== Problem ===
 +
 
 +
Let <math>M</math> be the midpoint of side <math>AB</math> of triangle <math>ABC</math>. Points <math>D</math> and <math>E</math> lie on line segments <math>BC</math> and <math>CA</math>, respectively, such that <math>DE</math> and <math>AB</math> are parallel. Point <math>P</math> lies on line segment <math>AM</math>. Lines <math>EM</math> and <math>CP</math> intersect at <math>X</math> and lines <math>DP</math> and <math>CM</math> meet at <math>Y</math>. Prove that <math>X,Y,B</math> are collinear.
 +
 
 +
=== Solution ===
 +
 
 +
<asy>
 +
import olympiad;
 +
size(12cm);
 +
 
 +
pair A=origin, B=(12,0), C=(4,8);
 +
draw(A--B--C--cycle);
 +
dot("$A$",A,S); dot("$B$",B,S); dot("$C$",C,N);
 +
 
 +
pair D=(7,5), E=(2.5,5);
 +
dot("$D$",D,NE); dot("$E$",E,NW);
 +
draw(D--E);
 +
path p = A--B;
 +
pair M=midpoint(p); dot("$M$",M,S);
 +
 
 +
pair P=(4.5,0); dot("$P$",P,S);
 +
path x = E--M; path y = C--P;
 +
draw(E--M, yellow+linewidth(1)); draw(C--P, yellow+linewidth(1));
 +
pair[] i = intersectionpoints(x,y); dot("$X$",i[0],W);
 +
path g = D--P; path h = C--M;
 +
draw(D--P, purple+linewidth(1)); draw(C--M, purple+linewidth(1));
 +
pair[] j = intersectionpoints(g,h); dot("$Y$",j[0],W-dir(20));
 +
 
 +
draw(i[0]--j[0]--B, black+dashed+linewidth(0.5));
 +
pair G=E+3.7*dir(125); dot("$G$",G,N);
 +
draw(E--G, black+dashed+linewidth(0.5)); draw(C--G, black+dashed+linewidth(0.5));
 +
</asy>
 +
 
 +
We want to prove <math>X,Y,B</math> [[collinear]], so we consider from which which direction we want to prove this. We can prove <math>\angle XYC + \angle BYC = 180</math> to do it, but we don't know any angles, so that probably won't be much use. Instead, we can prove <math>CM, DP, XB</math> collinear, since the intersection of <math>CM</math> and <math>DP</math> is <math>Y</math>. So, let's consider [[Ceva's Theorem]] (a concurrency related formula) on <math>\triangle BCP</math>.
 +
 
 +
Let <math>AB = c, AC = b, BC = a</math>. That means <math>AM = MB = \frac{c}{2}</math>. There are a lot of unknowns here, so let further set <math>AP = x, CD = y</math>. We know that
 +
<cmath>\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP}</cmath>
 +
Now, if we extend <math>EM</math> through <math>E</math> and intersect the line at <math>C</math> [[parallel]] to <math>AB</math> at point <math>G</math>, we see <math>\triangle GEC \sim \triangle MEA</math>. Thus, <math>\dfrac{GC}{AM} = \dfrac{EC}{AE} = \dfrac{CD}{BD} \implies \dfrac{GC}{\frac{c}{2}} = \dfrac{y}{a-y} \implies GC = \dfrac{\frac{c}{2} \cdot y}{a-y}</math>. Using <math>\triangle GCX \sim \triangle MPX</math>, <math>\dfrac{CX}{XP} = \dfrac{GC}{PM} = \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}</math>. Thus,
 +
<cmath>\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}=1</cmath>
 +
 
 +
 
 +
''[[Ceva's Theorem|Back to main article]]''

Latest revision as of 21:06, 28 April 2025

Introductory

Problem

Suppose $AB, AC$, and $BC$ have lengths $13, 14$, and $15$, respectively. If $\frac{AF}{FB} = \frac{2}{5}$ and $\frac{CE}{EA} = \frac{5}{8}$, find $BD$ and $DC$.

Solution

If $BD = x$ and $DC = y$, then $10x = 40y$, and ${x + y = 15}$. From this, we find $x = 12$ and $y = 3$.

Intermediate

Problem

Let $M$ be the midpoint of side $AB$ of triangle $ABC$. Points $D$ and $E$ lie on line segments $BC$ and $CA$, respectively, such that $DE$ and $AB$ are parallel. Point $P$ lies on line segment $AM$. Lines $EM$ and $CP$ intersect at $X$ and lines $DP$ and $CM$ meet at $Y$. Prove that $X,Y,B$ are collinear.

Solution

[asy] import olympiad; size(12cm);  pair A=origin, B=(12,0), C=(4,8); draw(A--B--C--cycle); dot("$A$",A,S); dot("$B$",B,S); dot("$C$",C,N);  pair D=(7,5), E=(2.5,5); dot("$D$",D,NE); dot("$E$",E,NW); draw(D--E); path p = A--B; pair M=midpoint(p); dot("$M$",M,S);  pair P=(4.5,0); dot("$P$",P,S); path x = E--M; path y = C--P; draw(E--M, yellow+linewidth(1)); draw(C--P, yellow+linewidth(1)); pair[] i = intersectionpoints(x,y); dot("$X$",i[0],W); path g = D--P; path h = C--M; draw(D--P, purple+linewidth(1)); draw(C--M, purple+linewidth(1)); pair[] j = intersectionpoints(g,h); dot("$Y$",j[0],W-dir(20));  draw(i[0]--j[0]--B, black+dashed+linewidth(0.5)); pair G=E+3.7*dir(125); dot("$G$",G,N); draw(E--G, black+dashed+linewidth(0.5)); draw(C--G, black+dashed+linewidth(0.5)); [/asy]

We want to prove $X,Y,B$ collinear, so we consider from which which direction we want to prove this. We can prove $\angle XYC + \angle BYC = 180$ to do it, but we don't know any angles, so that probably won't be much use. Instead, we can prove $CM, DP, XB$ collinear, since the intersection of $CM$ and $DP$ is $Y$. So, let's consider Ceva's Theorem (a concurrency related formula) on $\triangle BCP$.

Let $AB = c, AC = b, BC = a$. That means $AM = MB = \frac{c}{2}$. There are a lot of unknowns here, so let further set $AP = x, CD = y$. We know that \[\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP}\] Now, if we extend $EM$ through $E$ and intersect the line at $C$ parallel to $AB$ at point $G$, we see $\triangle GEC \sim \triangle MEA$. Thus, $\dfrac{GC}{AM} = \dfrac{EC}{AE} = \dfrac{CD}{BD} \implies \dfrac{GC}{\frac{c}{2}} = \dfrac{y}{a-y} \implies GC = \dfrac{\frac{c}{2} \cdot y}{a-y}$. Using $\triangle GCX \sim \triangle MPX$, $\dfrac{CX}{XP} = \dfrac{GC}{PM} = \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}$. Thus, \[\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}=1\]


Back to main article