Difference between revisions of "1983 AIME Problems/Problem 14"
(→Problem) |
|||
Line 2: | Line 2: | ||
In the adjoining figure, two circles with radii <math>8</math> and <math>6</math> are drawn with their centers <math>12</math> units apart. At <math>P</math>, one of the points of intersection, a line is drawn in such a way that the chords <math>QP</math> and <math>PR</math> have equal length. Find the square of the length of <math>QP</math>. | In the adjoining figure, two circles with radii <math>8</math> and <math>6</math> are drawn with their centers <math>12</math> units apart. At <math>P</math>, one of the points of intersection, a line is drawn in such a way that the chords <math>QP</math> and <math>PR</math> have equal length. Find the square of the length of <math>QP</math>. | ||
− | <asy> | + | <asy>size(160); defaultpen(linewidth(.8pt)+fontsize(11pt)); dotfactor=3; pair O1=(0,0), O2=(12,0); path C1=Circle(O1,8), C2=Circle(O2,6); pair P=intersectionpoints(C1,C2)[0]; path C3=Circle(P,sqrt(130)); pair Q=intersectionpoints(C3,C1)[0]; pair R=intersectionpoints(C3,C2)[1]; draw(C1); draw(C2); draw(O2--O1); dot(O1); dot(O2); draw(Q--R); label("$Q$",Q,NW); label("$P$",P,1.5*dir(80)); label("$R$",R,NE); label("12",waypoint(O1--O2,0.4),S);</asy> |
− | |||
− | defaultpen(linewidth(.8pt)+fontsize( | ||
− | dotfactor=3; | ||
− | pair O1=(0,0), O2=(12,0); | ||
− | path C1=Circle(O1,8), C2=Circle(O2,6); | ||
− | pair P=intersectionpoints(C1,C2)[0]; | ||
− | path C3=Circle(P,sqrt(130)); | ||
− | pair Q=intersectionpoints(C3,C1)[0]; | ||
− | pair R=intersectionpoints(C3,C2)[1]; | ||
− | draw(C1); | ||
− | draw(C2); | ||
− | draw(Q--R); | ||
− | label("$Q$",Q, | ||
− | label("$P$",P,dir(80)); | ||
− | label("$R$",R, | ||
− | </asy> | ||
__TOC__ | __TOC__ |
Revision as of 14:40, 25 January 2016
Problem
In the adjoining figure, two circles with radii and
are drawn with their centers
units apart. At
, one of the points of intersection, a line is drawn in such a way that the chords
and
have equal length. Find the square of the length of
.
Contents
[hide]Solution
Solution 1
First, notice that if we reflect over
we get
. Since we know that
is on circle
and
is on circle
, we can reflect circle
over
to get another circle (centered at a new point
with radius
) that intersects circle
at
. The rest is just finding lengths:
Since is the midpoint of segment
,
is a median of triangle
. Because we know that
,
, and
, we can find the third side of the triangle using Stewart's Theorem or similar approaches. We get
. So now we have a kite
with
,
, and
, and all we need is the length of the other diagonal
. The easiest way it can be found is with the Pythagorean Theorem. Let
be the length of
. Then

Doing routine algebra on the above equation, we find that , so
Solution 2
Draw additional lines as indicated. Note that since triangles and
are isosceles, the altitudes are also bisectors, so let
.
Since triangles
and
are similar. If we let
, we have
.
Applying the Pythagorean Theorem on triangle , we have
. Similarly, for triangle
, we have
.
Subtracting, .
Solution 3
Let . Angles
,
, and
must add up to
. By the Law of Cosines,
. Also, angles
and
equal
and
. So we have

Taking the of both sides and simplifying using the cosine addition identity gives
.
Solution 4
Observe that the length of the area where the two circles intersect can be found explicitly as . Let
, then the power of point
with regards to the larger circle gives
See Also
1983 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |