2025 AIME II Problems/Problem 1
Problem
Six points and
lie in a straight line in that order. Suppose that
is a point not on the line and that
and
Find the area of
Solution 1
A=(0,0); label("$A$", A, S); B=(1.5,0); label("$B$", B, S); C=(2.9,0); label("$C$", C, S); D=(4.2,0); label("$D$", D, S); E=(5.3,0); label("$E$", E, S); F=(6.5,0); label("$F$", F, S); G=(3.7,3); label("$G$", G, N); draw(A--B--C--D--E--F); draw(C--G--D); draw(B--G--E); (Error making remote request. Unknown error_msg)
Let ,
,
,
and
. Then we know that
=73,
,
,
and
. From this we can easily deduce
and
thus
. Using Heron's formula we can calculate the area of
to be
, and since the base of
is
of that of
, we calculate the area of
to be
.
See also
2025 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.