G
Topic
First Poster
Last Poster
No topics here!
Nice collinearity!
ComplexPhi   4
N Nov 20, 2022 by WALKERSkeren
Source: Romania TST 2014 Day 1 Problem 1
Let $ABC$ be a triangle, let ${A}'$, ${B}'$, ${C}'$ be the orthogonal projections of the vertices $A$ ,$B$ ,$C$ on the lines $BC$, $CA$ and $AB$, respectively, and let $X$ be a point on the line $A{A}'$.Let $\gamma_{B}$ be the circle through $B$ and $X$, centred on the line $BC$, and let $\gamma_{C}$ be the circle through $C$ and $X$, centred on the line $BC$.The circle $\gamma_{B}$ meets the lines $AB$ and $B{B}'$ again at $M$ and ${M}'$, respectively, and the circle $\gamma_{C}$ meets the lines $AC$ and $C{C}'$ again at $N$ and ${N}'$, respectively.Show that the points $M$, ${M}'$, $N$ and ${N}'$ are collinear.
4 replies
ComplexPhi
Jan 21, 2015
WALKERSkeren
Nov 20, 2022
Nice collinearity!
G H J
G H BBookmark kLocked kLocked NReply
Source: Romania TST 2014 Day 1 Problem 1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ComplexPhi
455 posts
#1 • 3 Y
Y by R8450932, Adventure10, Mango247
Let $ABC$ be a triangle, let ${A}'$, ${B}'$, ${C}'$ be the orthogonal projections of the vertices $A$ ,$B$ ,$C$ on the lines $BC$, $CA$ and $AB$, respectively, and let $X$ be a point on the line $A{A}'$.Let $\gamma_{B}$ be the circle through $B$ and $X$, centred on the line $BC$, and let $\gamma_{C}$ be the circle through $C$ and $X$, centred on the line $BC$.The circle $\gamma_{B}$ meets the lines $AB$ and $B{B}'$ again at $M$ and ${M}'$, respectively, and the circle $\gamma_{C}$ meets the lines $AC$ and $C{C}'$ again at $N$ and ${N}'$, respectively.Show that the points $M$, ${M}'$, $N$ and ${N}'$ are collinear.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Luis González
4145 posts
#2 • 4 Y
Y by PRMOisTheHardestExam, Adventure10, Mango247, AylyGayypow009
Clearly $AA'$ is the radical axis of $\gamma_B,\gamma_C,$ thus it follows that $BCNM$ and $BCM'N'$ are cyclic $\Longrightarrow$ $\angle BM'N'=\angle BCC'=\angle BB'C$ $\Longrightarrow$ $MN,M'N'$ are antiparallel to $BC$ WRT $AB,AC,$ i.e. $MN \parallel M'N' \parallel B'C'.$ But if $\gamma_B$ cuts $BC$ again at $Y,$ we have $(YM' \parallel CA) \perp BB'$ $\Longrightarrow$ $\angle AMM'=\angle BYM'=\angle BCA=\angle AC'B'$ $\Longrightarrow$ $MM' \parallel B'C'.$ Consequently $M,M',N,N'$ are collinear on a parallel to $B'C'.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ankoganit
3070 posts
#3 • 4 Y
Y by R8450932, PRMOisTheHardestExam, Adventure10, AylyGayypow009
[asy]
import graph;import geometry;size(8.5cm);
pen label=fontsize(10);defaultpen(label);
pair A=(7,6),B=(0,0),C=(10,0),H,X,Xd,M,N,Md,Nd,Ad,Bd,Cd;
H=orthocenter(A,B,C);
Ad=extension(A,H,B,C);
Bd=extension(B,H,C,A);
Cd=extension(C,H,A,B);
X=A+(1.4)*(Ad-A);
Xd=2*Ad-X;
path gammab=circumcircle(B,X,Xd);path gammac=circumcircle(C,X,Xd);
pair [] x=intersectionpoints(A--B,gammab);
if (x[0]==B) {
M=x[1];
} else {
M=x[0];
}
pair [] y=intersectionpoints(A--C,gammac);
if (y[0]==C) {
N=y[1];
} else {
N=y[0];
}
pair [] z=intersectionpoints(Bd--B,gammab);
if (z[0]==B) {
Md=z[1];
} else {
Md=z[0];
}
pair [] w=intersectionpoints(Cd--C,gammac);
if (w[0]==B) {
Nd=w[1];
} else {
Nd=w[0];
}
draw(A--B--C--cycle,blue);draw(X--H--C^^B--Bd^^H--Cd^^H--A,heavymagenta);draw(gammab^^gammac,orange);draw(M--N,purple+dashed);draw(circumcircle(B,M,C),darkgreen+dotted);draw(circumcircle(B,Md,Nd),darkgreen+dotted);draw(circumcircle(A,M,H),darkgreen+dotted);
dot(A);dot(H);dot(B);dot(C);dot(M);dot(N);dot(Md);dot(Nd);dot(Xd);dot(X);dot(H);dot(Ad);dot(Bd);dot(Cd);label("$N$",N,NE);label("$M$",M,NW);label("$M'$",Md,SSW);label("$N'$",Nd,SSW);label("$A$",A,NE);label("$B$",B,W);label("$C$",C,ESE);label("$H$",H,NNE);label("$X$",X,S);label("$X'$",Xd,SSW);label("$A'$",Ad,SW);label("$B'$",Bd,NNE);label("$C'$",Cd,NNW);dot(circumcenter(B,X,Xd));dot(circumcenter(C,X,Xd));label("$\gamma _B$",2*(circumcenter(B,X,Xd))-Xd,NE);label("$\gamma _C$",2*(circumcenter(C,X,Xd))-Xd,NE);
[/asy]

Suppose a reflection about $BC$ takes $X$ to $X'$; clearly $X'\in AA'$. Now since the centers of $\gamma_B$ and $\gamma_C$ are on $BC$, this reflection keeps them fixed. Thus they pass through $X'$ as well. So by power of point, $$AM\cdot AB=AX\cdot AX'=AN\cdot AC\implies BMNC\text{ is cyclic.}$$On the other hand, $$HM'\cdot HB=HX\cdot HX'=HN'\cdot HC\implies BM'N'C\text{ is cyclic.}$$Now we have \begin{align*} BM'\cdot BH=&(BH-HM')\cdot HB\\
=& BH^2-HM'\cdot HB=BH^2-HX'\cdot HX\\
=& BH^2-(HA-X'A')(HA+XA')=BH^2-HA^2+XA'^2\qquad\text{[Since }X'A'=XA']\\
=& BA'^2+XA'^2\\
=& BA^2-AA'^2+XA'^2=BA^2-(AA'+XA')(AA'-X'A')\\
=& BA^2-AX\cdot AX'\\
=& BA^2-AM\cdot AB=BA\cdot(BA-AM)\\
=&BA\cdot BM.\end{align*}Therefore $BM'\cdot BH=BM\cdot BA\implies AMM'H$ is cyclic. Therefore $$\angle MM'B=\angle BAH=\angle HCB=\angle HM'N'.$$This implies $M,M',N'$ are collinear. Similarly, we can prove $N,M',N'$ are collinear, so that $M,M',N,N'$ are collinear, as desired. $\blacksquare$
This post has been edited 3 times. Last edited by Ankoganit, May 21, 2016, 5:49 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WizardMath
2487 posts
#4 • 2 Y
Y by Adventure10, Mango247
This configuration is like 2013 G1
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WALKERSkeren
7 posts
#6
Y by
Luis González wrote:
$\angle BM'N'=\angle BCC'=\angle BB'C$

I'm sorry but maybe it is a typo.
Z K Y
N Quick Reply
G
H
=
a