Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
points on sides of a triangle, intersections, extensions, ratio of areas wanted
parmenides51   1
N 32 minutes ago by FrancoGiosefAG
Source: Mexican Mathematical Olympiad 1997 OMM P5
Let $P,Q,R$ be points on the sides $BC,CA,AB$ respectively of a triangle $ABC$. Suppose that $BQ$ and $CR$ meet at $A', AP$ and $CR$ meet at $B'$, and $AP$ and $BQ$ meet at $C'$, such that $AB' = B'C', BC' =C'A'$, and $CA'= A'B'$. Compute the ratio of the area of $\triangle PQR$ to the area of $\triangle ABC$.
1 reply
parmenides51
Jul 28, 2018
FrancoGiosefAG
32 minutes ago
starting with intersecting circles, line passes through midpoint wanted
parmenides51   2
N an hour ago by EmersonSoriano
Source: Peru Ibero TST 2014
Circles $C_1$ and $C_2$ intersect at different points $A$ and $B$. The straight lines tangents to $C_1$ that pass through $A$ and $B$ intersect at $T$. Let $M$ be a point on $C_1$ that is out of $C_2$. The $MT$ line intersects $C_1$ at $C$ again, the $MA$ line intersects again to $C_2$ in $K$ and the line $AC$ intersects again to the circumference $C_2$ in $L$. Prove that the $MC$ line passes through the midpoint of the $KL$ segment.
2 replies
1 viewing
parmenides51
Jul 23, 2019
EmersonSoriano
an hour ago
An inequality
Rushil   14
N an hour ago by frost23
Source: Indian RMO 1994 Problem 8
If $a,b,c$ are positive real numbers such that $a+b+c = 1$, prove that \[ (1+a)(1+b)(1+c) \geq 8 (1-a)(1-b)(1-c) . \]
14 replies
Rushil
Oct 25, 2005
frost23
an hour ago
3 var inequality
SunnyEvan   6
N an hour ago by JARP091
Let $ a,b,c \in R $ ,such that $ a^2+b^2+c^2=4(ab+bc+ca)$Prove that :$$ \frac{7-2\sqrt{14}}{48} \leq \frac{a^3b+b^3c+c^3a}{(a^2+b^2+c^2)^2} \leq \frac{7+2\sqrt{14}}{48} $$
6 replies
SunnyEvan
May 17, 2025
JARP091
an hour ago
collinearity as a result of perpendicularity and equality
parmenides51   2
N an hour ago by FrancoGiosefAG
Source: Mexican Mathematical Olympiad 1996 OMM P6
In a triangle $ABC$ with $AB < BC < AC$, points $A' ,B' ,C'$ are such that $AA' \perp BC$ and $AA' = BC, BB' \perp  CA$ and $BB'=CA$, and $CC' \perp AB$ and $CC'= AB$, as shown on the picture. Suppose that $\angle AC'B$ is a right angle. Prove that the points $A',B' ,C' $ are collinear.
2 replies
parmenides51
Jul 28, 2018
FrancoGiosefAG
an hour ago
3 var inequality
JARP091   6
N 2 hours ago by JARP091
Source: Own
Let \( x, y, z \in \mathbb{R}^+ \). Prove that
\[
\sum_{\text{cyc}} \frac{x^3}{y^2 + z^2} \geq \frac{x + y + z}{2}
\]without using the Rearrangement Inequality or Chebyshev's Inequality.
6 replies
JARP091
Today at 8:54 AM
JARP091
2 hours ago
Helplooo
Bet667   1
N 2 hours ago by Lil_flip38
Let $ABC$ be an acute angled triangle.And altitudes $AD$ and $BE$ intersects at point $H$.Let $F$ be a point on ray $AD$ such that $DH=DF$.Circumcircle of $AEF$ intersects line $BC$ at $K$ and $L$ so prove that $BK=BL$
1 reply
Bet667
2 hours ago
Lil_flip38
2 hours ago
Cyclic sum of 1/(a+1/b+1)
v_Enhance   22
N 2 hours ago by Rayvhs
Source: ELMO Shortlist 2013: Problem A2, by David Stoner
Prove that for all positive reals $a,b,c$,
\[\frac{1}{a+\frac{1}{b}+1}+\frac{1}{b+\frac{1}{c}+1}+\frac{1}{c+\frac{1}{a}+1}\ge \frac{3}{\sqrt[3]{abc}+\frac{1}{\sqrt[3]{abc}}+1}. \]Proposed by David Stoner
22 replies
v_Enhance
Jul 23, 2013
Rayvhs
2 hours ago
xf(x + xy) = xf(x) + f(x^2)f(y)
orl   14
N 2 hours ago by jasperE3
Source: MEMO 2008, Team, Problem 5
Determine all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ such that
\[ x f(x + xy) = x f(x) + f \left( x^2 \right) f(y) \quad  \forall  x,y \in \mathbb{R}.\]
14 replies
orl
Sep 10, 2008
jasperE3
2 hours ago
Beautiful Number Theory
tastymath75025   34
N 2 hours ago by Adywastaken
Source: 2022 ISL N8
Prove that $5^n-3^n$ is not divisible by $2^n+65$ for any positive integer $n$.
34 replies
tastymath75025
Jul 9, 2023
Adywastaken
2 hours ago
Hard Functional Equation in the Complex Numbers
yaybanana   1
N 2 hours ago by jasperE3
Source: Own
Find all functions $f:\mathbb {C}\rightarrow \mathbb {C}$, s.t :

$f(xf(y)) + f(x^2+y) = f(x+y)x + f(f(y))$

for all $x,y \in \mathbb{C}$
1 reply
yaybanana
Apr 9, 2025
jasperE3
2 hours ago
parallel lines with incenter
Scorpion.k48   6
N Mar 1, 2018 by liekkas
Let $\triangle ABC$ with incenter $I$. $AI, BI, CI$ cuts $BC, CA, AB$ at $D, E, F$, res. Let $X$ is orthocenter of $\triangle DEF$. Prove that $IX$ is parallel to Euler line of $\triangle ABC$
6 replies
Scorpion.k48
Aug 5, 2015
liekkas
Mar 1, 2018
parallel lines with incenter
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Scorpion.k48
195 posts
#1 • 2 Y
Y by Adventure10, Mango247
Let $\triangle ABC$ with incenter $I$. $AI, BI, CI$ cuts $BC, CA, AB$ at $D, E, F$, res. Let $X$ is orthocenter of $\triangle DEF$. Prove that $IX$ is parallel to Euler line of $\triangle ABC$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
A-B-C
254 posts
#2 • 1 Y
Y by Adventure10
It has been posted here http://www.artofproblemsolving.com/community/c6h171583
You can see the proof of Jean-Louis Ayme in his website.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#3 • 9 Y
Y by mineiraojose, A-B-C, enhanced, bobaboby1, noway, AlastorMoody, tarzanjunior, enzoP14, Adventure10
My solution :

Lemma 1 :

Let $ I $ be the incenter of $ \triangle ABC $ and $ \triangle XYZ $ be the incentral triangle of $ \triangle ABC $ .
Let $ D, E, F $ be the reflection of $ I $ in $ BC, CA, AB $, resp and $ P \equiv AD \cap BE \cap CF $ .

Then $ IP $ passes through the orthocenter $ H $ of $ \triangle XYZ $

Proof :

Let $ Q \equiv YH \cap ZX, R \equiv XH \cap YZ, S \equiv AX \cap YZ $ .
Let $ T \equiv YZ \cap BC, U \equiv AD \cap BC, V \equiv BE \cap CA $ .

From $ U(A,I;S,X)=-1 $ and $ \angle IUX=\angle DUX \Longrightarrow US \perp UX \equiv BC $ ,
so combine $ AT \perp AI \Longrightarrow A, S, T, U $ are concyclic $ \Longrightarrow \angle IUS=\angle AUS=\angle ATS $ ,
hence notice $ A, R, T, X $ are concyclic $ \Longrightarrow \angle IUS=\angle ATS=\angle AXR=\angle RUS \Longrightarrow I \in UR $ ,
so from Desargue theorem (for $ \triangle ABU $ and $ \triangle XYR $) $ \Longrightarrow XR \cap AP $ lie on the antiorthic axis of $ \triangle ABC $ .

Similarly, we can prove $ I \in VQ $ and $ YQ \cap BP $ lie on the the antiorthic axis of $ \triangle ABC $ ,
so from Desargue theorem (for $ \triangle ABP $ and $ \triangle XYH $) $ \Longrightarrow AX \cap BY \in PH $ . i.e. $ P, I, H $ are collinear
____________________________________________________________
Lemma 2 :

Let $ I $ be the incenter of $ \triangle ABC $ .
Let $ D, E, F $ be the reflection of $ I $ in $ BC, CA, AB $, respectively .

Then $ IP $ is parallel to the Euler line $ \mathcal{E} $ of $ \triangle ABC $ where $ P \equiv AD \cap BE \cap CF $

Proof :

Let $ Y \equiv FD \cap CA, Z \equiv DE \cap AB $ .
Let $ \triangle A_1B_1C_1, \triangle A_2B_2C_2 $ be the intouch triangle, orthic triangle of $ \triangle ABC $, respectively .
Let $ T $ be the midpoint of $ AI $ and $ \overline{A_3B_3C_3} $ be the orthic axis of $ \triangle ABC $ ($ A_3\in BC, B_3\in CA,C_3\in AB $) .

Since $ \odot (Y, YI), \odot (Z, ZI) $ is the image of $ BE, CF $, resp under the inversion $ \mathbf{I}(\odot (DEF)) $ ,
so $ IP $ is the radical axis of $ \odot (Y, YI), \odot (Z, ZI) \Longrightarrow IP \perp YZ $ (also follows from Sondat theorem) . (1)

From $ TC_1 \parallel AF, A_1C_1 \parallel DF \Longrightarrow \angle AFD=\angle TC_1A_1 $ ,
so notice $ T $ is the center of $ \odot (AI) \Longrightarrow \angle AFD=90^{\circ}-\tfrac{1}{2} \angle A+\tfrac{1}{2} \angle B $ ,

hence by sine rule we get $ AY=AF \cdot \frac{\sin \angle AFD}{\sin \angle AYD}=AI \cdot \frac{\cos \tfrac{1}{2} (\angle A-\angle B)}{\sin \tfrac{1}{2} (\angle A-\angle C)} $ .

Similarly, $ AZ=AI \cdot \frac{\cos \tfrac{1}{2} (\angle A-\angle C)}{\sin \tfrac{1}{2} (\angle A-\angle B)} \Longrightarrow \frac{AY}{AZ}=\frac{ \sin \tfrac{1}{2} (\angle A-\angle B) \cdot \cos \tfrac{1}{2} (\angle A-\angle B)}{\sin \tfrac{1}{2} (\angle A-\angle C) \cdot \cos \tfrac{1}{2} (\angle A-\angle C)}=\frac{\sin (\angle A-\angle B)}{\sin (\angle A-\angle C)} $ . (2)

Since $ AB_3=AC_2 \cdot \frac{\sin \angle AC_2B_3}{\sin \angle AB_3C_2}= \frac{AC_2 \cdot \sin \angle C}{\sin (\angle A-\angle C) } , AC_3=AB_2 \cdot \frac{\sin \angle AB_2C_3}{\sin \angle AC_3B_2}=\frac{AB_2 \cdot \sin \angle B}{\sin (\angle A-\angle B) } $ ,

so we get $ \frac{AB_3}{AC_3}=\frac{AC_2 \cdot \sin \angle C}{AB_2 \cdot \sin \angle B} \cdot \frac{\sin (\angle A-\angle B)}{\sin (\angle A-\angle C)}=\frac{AC_2 \cdot AB}{AB_2 \cdot AC} \cdot \frac{\sin (\angle A-\angle B)}{\sin (\angle A-\angle C)}=\frac{\sin (\angle A-\angle B)}{\sin (\angle A-\angle C)} $ ,

hence combine (2) $ \Longrightarrow B_3C_3 \parallel YZ \Longrightarrow YZ \perp \mathcal{E} $ ($\because B_3C_3 $ is perpendicular to $ \mathcal{E} $ (well-known)) $ \Longrightarrow IP \parallel \mathcal{E} $ (from (1)) .
____________________________________________________________
Back to the main problem :

Let $ I_a, I_b, I_c $ be the reflection of $ I $ in $ BC, CA, AB $, resp and $ P \equiv AI_a \cap BI_b \cap CI_c $ .

From lemma 1 $ \Longrightarrow P \in IX $, so from lemma 2 $ \Longrightarrow IX \equiv IP $ is parallel to the Euler line of $ \triangle ABC $ .

Q.E.D
____________________________________________________________
P.S. The fact $ AI_a, BI_b, CI_c $ are concurrent simplified follows from Jacobi theorem :)
Attachments:
This post has been edited 1 time. Last edited by TelvCohl, Aug 5, 2015, 11:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
A-B-C
254 posts
#4 • 3 Y
Y by bobaboby1, Adventure10, Mango247
My solution is based on some properties that appearred on ETC.
$X=X_{500}$, $I=X_1$
From http://faculty.evansville.edu/ck6/encyclopedia/glossary.html and http://faculty.evansville.edu/ck6/encyclopedia/ETC.html(see $X_{35},X_{79},X_{500}$, we have $X_{500}$ is crosssum of $X_{1},X_{79}$ so $X_{500},X_1,X_{79}$ are collinear.
So we have to show that $X_1X_{79}$ is parallel to Euler line of $\triangle ABC$.
Also from here http://faculty.evansville.edu/ck6/encyclopedia/ETC.html, if $A',B',C'$ are reflections of $I$ in $BC,CA,AB$ then $AA',BB',CC'$ are concurrent at $X_{79}$.
From properties of Neuberg cubic,http://bernard.gibert.pagesperso-orange.fr/Exemples/k001.html, $P$ lies on Neuberg cubic, $P_a,P_b,P_c$ are reflections of $P$ in $BC,CA,AB$ then $AP_a,BP_b,CP_c$ are concurrent at a point on $PP*$ where $P*$ is isogonal conjugate of $P$ WRT $\triangle ABC$, furthermore, $PP*$ is parallel to Euler line of $\triangle ABC$ so $X_{1}X_{79}\parallel X_{3}X_{4}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
A-B-C
254 posts
#5 • 4 Y
Y by mineiraojose, bobaboby1, Adventure10, Mango247
This proof is wrong.
______
A synthetic proof for lemma 2 in Telv's post:
$H_a$is orthocenter of $\triangle IBC$, $AI$ intersects $\odot (ABC)$ at $O_a\ne A$ then $O_a$ is circumcenter of $\triangle IBC$
$O_b,O_c$ is determined similarly.
Since $BH_a,CH_a\perp IC,IB$, and $IO_{c}=BO_c$, $IO_{b}=CO_b$ then $H_a$ is circumcenter of $\triangle IO_bO_c$
Similarly $\Rightarrow$ $O_aH_a$, $O_bH_b$, $O_cH_c$ are concurrent at Kosnita point $S$ of $\triangle O_aO_bO_c$(also Schiffler point and Schiffler point lie on Euler line)
$A,B,C$ are circumcenters of $\triangle IEF,\triangle IFD,\triangle IDE$ so $AD,BE,CF$ are concurrent at Kosnita point $P$ of $\triangle DEF$
$\triangle DEF$ and $\triangle O_aO_bO_c$ are homothetic, $I$, $O$ are their circumcenters
$\Longrightarrow$ $IP\parallel OS$, or $IP$ is parallel to Euler line of $\triangle ABC$
Attachments:
This post has been edited 3 times. Last edited by A-B-C, Dec 6, 2021, 4:45 AM
Reason: wrong
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#6 • 6 Y
Y by mineiraojose, bobaboby1, enzoP14, enhanced, Adventure10, Mango247
TelvCohl wrote:
Lemma 2 :

Let $ I $ be the incenter of $ \triangle ABC $ .
Let $ D, E, F $ be the reflection of $ I $ in $ BC, CA, AB $, respectively .

Then $ IP $ is parallel to the Euler line $ \mathcal{E} $ of $ \triangle ABC $ where $ P \equiv AD \cap BE \cap CF $
Another proof to the Lemma 2 at post #3 :

Lemma :

Let $ \triangle DEF $ be the orthic triangle of $ \triangle ABC $ and $ Y $ $ \equiv $ $ CA $ $ \cap $ $ FD, $ $ Z $ $ \equiv $ $ AB $ $ \cap $ $ DE $. Let $ T $ be the intersection of the bisector of $ \angle DYC $ and $ \angle DZB $. Let $ I_a $ be the reflection of the Incenter $ I $ of $ \triangle ABC $ in $ BC $. Then $ A, $ $ T, $ $ I_a $ are collinear.

Proof :

Let $ K $ $ \equiv $ $ AI_a $ $ \cap $ $ BC, $ $ U $ $ \equiv $ $ BI $ $ \cap $ $ CA, $ $ V $ $ \equiv $ $ CI $ $ \cap $ $ AB $. Let $ P, $ $ Q $ be the projection of $ U $ on $ AB, $ $ BC $, respectively and $ R, $ $ S $ be the projection of $ V $ on $ BC, $ $ CA $, respectively. From $ AP $ $ / $ $ FP $ $ = $ $ AU $ $ / $ $ CU $ $ = $ $ AB $ $ / $ $ CB $ $ = $ $ AD $ $ / $ $ CF $ $ = $ $ AY $ $ / $ $ FY $ we get $ YP $ is the bisector of $ \angle DYC $, so $ Y, $ $ T, $ $ P $ are collinear. Similarly, we can prove $ Q $ $ \in $ $ YT, $ $ R $ $ \in $ $ ZT $ and $ S $ $ \in $ $ ZT $.

Let $ T_1 $ $ \equiv $ $ PQ $ $ \cap $ $ AI_a, $ $ T_2 $ $ \equiv $ $ RS $ $ \cap $ $ AI_a $. From Menelaus theorem (for $ \triangle ABK $ and $ \overline{QT_1P} $) and notice $ BP $ $ = $ $ BQ $ we get $ AT_1 $ $ / $ $ KT_1 $ $ = $ $ AP $ $ / $ $ KQ $ ... (1). Similarly, we can prove $ AT_2 $ $ / $ $ KT_2 $ $ = $ $ AS $ $ / $ $ KR $ ... (2). On the other hand, if $ G $ $ \equiv $ $ AI $ $ \cap $ $ UV $ then from $ (KA, KI; KG, BC)=-1 $ and $ BC $ bisect $ \angle AKI $ we get $ GK $ $ \perp $ $ BC $, so $ KQ $ $ / $ $ KR $ $ = $ $ GU $ $ / $ $ GV $ $ = $ $ AU $ $ / $ $ AV $ $ = $ $ AP $ $ / $ $ AS $, hence combine with (1) and (2) we conclude that $ T_1 $ $ \equiv $ $ T_2 $ $ \equiv $ $ T $. i.e. $ A, $ $ T, $ $ I_a $ are collinear
____________________________________________________________
Back to the main proof :

Let $ \triangle XYZ $ be the orthic triangle of $ \triangle ABC $. Let $ X_1 $ be the intersection of the bisector of $ \angle (CA, ZX) $ and the bisector of $ \angle (AB, XY) $ (define $ Y_1, $ $ Z_1 $, similarly). From the Lemma $\Longrightarrow $ $ X_1 $ $ \in $ $ AD, $ $ Y_1 $ $ \in $ $ BE $ and $ Z_1 $ $ \in $ $ CF $, so the perspectrix of any two triangles of $ \{ \triangle ABC, \triangle DEF, \triangle X_1Y_1Z_1 \} $ are concurrent, hence the perspectrix $ \tau $ of $ \triangle ABC, $ $ \triangle DEF $ is parallel to the Orthic axis of $ \triangle ABC $ (notice $ \triangle DEF $ and $ \triangle X_1Y_1Z_1 $ are homothetic).

From Sondat's theorem we get $ \tau $ is perependicular to the line connecting the orthology center $ I $ of $ \{ \triangle ABC, \triangle DEF \} $ and the perspector $ P $ of $ \triangle ABC, $ $ \triangle DEF $, so we conclude that $ IP $ is parallel to the Euler line of $ \triangle ABC $.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
liekkas
370 posts
#7 • 3 Y
Y by bobaboby1, Adventure10, Mango247
A-B-C wrote:
$BI=BO_c,CI=CO_b$

Thanks for your reply, but you simply went wrong here. Please check it carefully:)
This post has been edited 1 time. Last edited by liekkas, Mar 1, 2018, 4:45 PM
Z K Y
N Quick Reply
G
H
=
a