Basic Properties of Antigonal Conjugates with a taste of Rectangular Hyperbolas.
by amar_04, Aug 13, 2020, 11:26 AM
So as the title suggests, we will be discussing some basic facts and properties about Antigonal Conjuagtes. For those who don't know what Antigonal Conjugates are. Don't worry! I will be going through the very basics that is I will be defining Poncelet Point and other stuffs necessary. So without any delay we start.
Properties of Poncelet Point

Let
be an arbitary point in the plane. Then the Point of Concurrency of the Nine Point Circles of
is the Poncelet Point of
. Sometimes it is referred to as the Euler-Poncelet Point too.
Throughout we will assume
as the Poncelet Point of
. Here are some Interesting Properties of the Poncelet Point.
Property 1:- If
is the Nine Point Circle of
, then 
Property 2:- If
is the Pedal Circle of
WRT
, then 
Property 3:- If
is the Ceva Circle of
WRT
, then 
Exercise:- Prove that the concurrency of the Nine Point Circles of
and Property 1 and Property 2 yourselves. Just simply angle chase.
We will come back to the Proof of Property 3 later. Before that let's move onto some Hyperbola, we will be resorting to that often!

What is an Equilateral or Rectangular Hyperbola?
The Hyperbolas which have perpendicular Asymptotes fall into the category of Rectangular Hyperbolas.
Basic Properties of Rectangular Hyperbolas
Lemma 1:- The Orthocenter
of
lies on the Rectangular Hyperbola
passing through
. The converse holds too.
We give an Elementary proof of this Lemma (rather non-standard). Let
and
be the Infinite Line along two lines at Infinity
and
respectively such that
. Draw two lines through
and
respectively such that they are parallel to
and draw two lines through
and
respectively which are parallel to
. Let
be the Diagonal of the rectangle formed by those lines. Let
be the Projection of
on
. The figure will look something like this
. Now clearly by Coverse of Reims Theorem
are collinear. But by Converse of Pascals Theorem on
we get
lies on the Rectangular Hyperbola containing
. So,
. Try the Converse yourself!
Lemma 2:- The Center of
lies on the Nine Point Circle of 
Let
be a fixed rectangular hyperbola through vertices of
. If
is the orthocenter WRT
, then
lies on
. Let
be the midpoints of
. Let
be the orthic triangle WRT
.
is the Nine-Point Circle WRT
. Let the tangent to
at
;
and
intersect at
, then
intersect at
which is the center of
. Consider the reflections of
over
to
. Then,
lies on
. Obviously
is a parallelogram. Apply Pascal's Theorem on
tangent to
and the
tangent to
are parallel. Let
,
and
. Then
is the pedal triangle of
WRT
. Apply Pascal's Theorem on
and
is the Simson Line
lies on
lies on Nine-Point Circle. 
The above Proof of Lemma 2 was by @Alastor Moody here. Any way I give another Proof for Lemma 2 which will further prove that the Center of the Rectangular
passing through
is the Poncelet Point
of
.
Before Proving Lemma 2 we start with a Theorem.
Theorem:- Let
be a point on
. Let
be the Orthocenter of
and define
cyclically. Then the reflection
where
is the Poncelet Point of
.
It's fairly easy to see that
is the midpoint of
because the Pedal Triangle degenerates into the Simson Line of
and Midpoint of
where
is the Nine Point Circle of
. So, midpoint of
is
also it's easy to see that
and
with Homothetic Center at the midpoint of
which is
from (
). Now by Lemma 1 clearly
lies on the Rectangular Hyperbola
passing through
and from Theorem
is the midpoint of
!
So we proved Lemma 2.
Now we are ready to prove Property 3 mentioned above.
Lemma:- Given a
and two points
. Let
be the anticevian triangle of
WRT
and let
be the anticevian triangle of
WRT
. Then
lie on a conic. (See Property 1 here.)
Let
be the Point and
be the Cevian Triangle of
WRT
. Let
be the Excentral Triangle of
and
be the Incenter of
. Then from Lemma we get that
lies on a Conic and clearly from Lemma 1 we get that this is a Rectangular Hyperbola
and the Center of
lies on
which is the Poncelet Point
of
. Here is a diagram.
![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -15.842401898734185, xmax = 22.075934810126604, ymin = -10.103860759493674, ymax = 11.24605316455697; /* image dimensions */
/* draw figures */
draw((xmin, 4.568714416151212*xmin + 21.662856469515518)--(xmax, 4.568714416151212*xmax + 21.662856469515518), linewidth(0.8)); /* line */
draw((xmin, 0.007788161993769443*xmin-4.744906542056075)--(xmax, 0.007788161993769443*xmax-4.744906542056075), linewidth(0.8)); /* line */
draw((xmin, -1.0716650680340856*xmin + 2.8652387296403026)--(xmax, -1.0716650680340856*xmax + 2.8652387296403026), linewidth(0.8)); /* line */
draw((xmin, -3.5116785471619987*xmin-5.266561761690379)--(xmax, -3.5116785471619987*xmax-5.266561761690379), linewidth(0.4)); /* line */
draw((xmin, 0.625*xmin-1.17125)--(xmax, 0.625*xmax-1.17125), linewidth(0.4)); /* line */
draw((xmin, -0.3606965174129354*xmin-2.147089552238806)--(xmax, -0.3606965174129354*xmax-2.147089552238806), linewidth(0.4)); /* line */
draw((xmin, -0.9272185087388412*xmin-4.88349319466219)--(xmax, -0.9272185087388412*xmax-4.88349319466219), linewidth(0.4)); /* line */
draw((xmin, 2.0028278005435047*xmin-4.449201843921155)--(xmax, 2.0028278005435047*xmax-4.449201843921155), linewidth(0.4)); /* line */
draw((xmin, 0.09994520887466238*xmin + 0.07789326743154854)--(xmax, 0.09994520887466238*xmax + 0.07789326743154854), linewidth(0.4)); /* line */
draw((xmin, -5.494449467187799*xmin-5.560447990839757)--(xmax, -5.494449467187799*xmax-5.560447990839757), linewidth(0.4)); /* line */
draw((xmin, 2.9774754756368607*xmin + 13.976884698854816)--(xmax, 2.9774754756368607*xmax + 13.976884698854816), linewidth(0.4)); /* line */
draw((xmin, -0.3358549913114254*xmin-2.0271004899458607)--(xmax, -0.3358549913114254*xmax-2.0271004899458607), linewidth(0.4)); /* line */
draw((xmin, -1.4502647138281781*xmin + 3.765954629369643)--(xmax, -1.4502647138281781*xmax + 3.765954629369643), linewidth(0.4)); /* line */
draw((xmin, 0.689529291077047*xmin-1.324769843763852)--(xmax, 0.689529291077047*xmax-1.324769843763852), linewidth(0.4)); /* line */
pair hyperbolaLeft1 (real t) {return (4.1547889871044115*(1+t^2)/(1-t^2),4.1547889871044115*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (4.1547889871044115*(-1-t^2)/(1-t^2),4.1547889871044115*(-2)*t/(1-t^2));}
draw(shift((-3.1406908410689613,2.08904391317063))*rotate(-75.32413781366773)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.8)); draw(shift((-3.1406908410689613,2.08904391317063))*rotate(-75.32413781366773)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.8)); /* hyperbola construction */
draw((xmin, 0.1820018558677955*xmin-4.719084595081908)--(xmax, 0.1820018558677955*xmax-4.719084595081908), linewidth(0.4)); /* line */
/* dots and labels */
dot((-3.332686708860754,6.436762658227854),dotstyle);
label("$A$", (-4.111068987341767,6.6591575949367146), NE * labelscalefactor);
dot((-5.79,-4.79),dotstyle);
label("$B$", (-6.140422784810124,-4.432789873417722), NE * labelscalefactor);
dot((7.05,-4.69),dotstyle);
label("$C$", (7.147674683544319,-4.4049905063291135), NE * labelscalefactor);
dot((-0.99,-1.79),dotstyle);
label("$P$", (-0.8863424050632832,-1.5138563291139224), NE * labelscalefactor);
dot((-0.14821996135870136,-4.746060903125846),linewidth(4pt) + dotstyle);
label("$X$", (0.2812310126582368,-5.26677088607595), NE * labelscalefactor);
dot((2.3790722197854612,0.31567013736591315),linewidth(4pt) + dotstyle);
label("$Y$", (2.4773810126582387,0.5432968354430405), NE * labelscalefactor);
dot((-4.830180794957348,-0.40486016102284644),linewidth(4pt) + dotstyle);
label("$Z$", (-5.139645569620249,0.18190506329114164), NE * labelscalefactor);
dot((5.198317102109108,-3.772981235108749),linewidth(4pt) + dotstyle);
label("$F$", (5.312916455696216,-3.543210126582278), NE * labelscalefactor);
dot((-6.687943381658956,-5.936302702482577),linewidth(4pt) + dotstyle);
label("$E$", (-7.252397468354428,-5.739360126582279), NE * labelscalefactor);
dot((-2.306126744694759,7.110448872815898),linewidth(4pt) + dotstyle);
label("$D$", (-2.1929126582278413,7.659934810126589), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](//latex.artofproblemsolving.com/6/c/a/6cad8731ef7c51229dfac07cf8f2e7447032cb71.png)
Phew! So we have learned about some basic and elementary properties of Poncelet Point and Conics. Now it's time for us to work with Antigonal Conjuagtes! We define
as the Antigonal Conjugate of
WRT
throughout.
Properties of Antigonal Conjugtes
If
is an aribary point then
is the reflection of
over
where
is the Poncelet Point of
.
Now we will talk about some well known Properties of Antigonal Conjugates.
Lemma 1:-
and similarly others.
Lemma 2:-
is the Isogonal Conjuagte of the Inverse of the Isogonal Conjugate of a Point
WRT 
Lemma 3:-
lies on the Reflection Circle of
WRT
.
Lemma 3:-
are Antipodal Points WRT the Rectangular Hyperbola
passing through
.
Lemma 5:- Let
be the Medial Triangle of
. Let
be the triangle formed by the reflection of
about
respectively. Then
lies on a Conic
.
Lemma 6:- The Rectangular Hyperbola
passing through
is the Isogonal Conjugate of the Perendicular Bisector of
WRT
.
Lemma 7:- Let
be the Isogonal Conjugates of
WRT
respectively. Then
are Inverses WRT
.
Try angle chasing (Lemma 1 , Lemma 2 and Lemma 7) and Lemma 3 is trivial from Lemma 2. So I will just prove Lemma 5 and Lemma 6.
Proof of Lemma 5
![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -13.75, xmax = 15.41, ymin = -7.87, ymax = 7.47; /* image dimensions */
pen qqttzz = rgb(0,0.2,0.6);
/* draw figures */
draw((xmin, 4.53913043478261*xmin + 11.813130434782611)--(xmax, 4.53913043478261*xmax + 11.813130434782611), linewidth(0.8) + qqttzz); /* line */
draw((xmin, 0.011382113821138186*xmin-4.169821138211383)--(xmax, 0.011382113821138186*xmax-4.169821138211383), linewidth(0.8) + qqttzz); /* line */
draw((xmin, -1.03*xmin + 4.9631)--(xmax, -1.03*xmax + 4.9631), linewidth(0.8) + qqttzz); /* line */
pair hyperbolaLeft1 (real t) {return (3.7648470037776307*(1+t^2)/(1-t^2),3.7648470037776307*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (3.7648470037776307*(-1-t^2)/(1-t^2),3.7648470037776307*(-2)*t/(1-t^2));}
draw(shift((-1.207373023347141,2.157029928327833))*rotate(-74.02819642656856)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.8)); draw(shift((-1.207373023347141,2.157029928327833))*rotate(-74.02819642656856)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.8)); /* hyperbola construction */
draw((2.21,-1.45)--(-1.23,6.23), linewidth(0.4));
draw((2.21,-1.45)--(-3.53,-4.21), linewidth(0.4));
draw((2.21,-1.45)--(8.77,-4.07), linewidth(0.4)); draw(shift((1.555,-0.875))*rotate(150.97180357343146)*xscale(4.373670789935975)*yscale(2.8581171359992825)*unitcircle, linewidth(0.4) + red); draw(shift((0.9,-0.3))*rotate(-29.028196426568545)*xscale(8.74734157987195)*yscale(5.716234271998564)*unitcircle, linewidth(0.4) + red);
draw((2.21,-1.45)--(5.33,3.61), linewidth(0.4));
draw((2.21,-1.45)--(-6.97,3.47), linewidth(0.4));
draw((2.21,-1.45)--(-4.624746046694282,5.764059856655666), linewidth(0.4));
draw((2.21,-1.45)--(3.03,-6.83), linewidth(0.4));
/* dots and labels */
dot((-1.23,6.23),dotstyle);
label("$A$", (-1.15,6.43), NE * labelscalefactor);
dot((-3.53,-4.21),dotstyle);
label("$B$", (-3.45,-4.01), NE * labelscalefactor);
dot((8.77,-4.07),dotstyle);
label("$C$", (8.85,-3.87), NE * labelscalefactor);
dot((-1.1376080880630828,-1.8872894058864897),linewidth(4pt) + dotstyle);
label("$H$", (-1.05,-1.73), NE * labelscalefactor);
dot((2.21,-1.45),dotstyle);
label("$P$", (2.29,-1.25), NE * labelscalefactor);
dot((0.49,2.39),linewidth(4pt) + dotstyle);
label("$X_A$", (0.57,2.55), NE * labelscalefactor);
dot((5.49,-2.76),linewidth(4pt) + dotstyle);
label("$X_C$", (5.57,-2.61), NE * labelscalefactor);
dot((3.77,1.08),linewidth(4pt) + dotstyle);
label("$M_B$", (3.85,1.23), NE * labelscalefactor);
dot((-2.38,1.01),linewidth(4pt) + dotstyle);
label("$M_C$", (-2.31,1.17), NE * labelscalefactor);
dot((-0.66,-2.83),linewidth(4pt) + dotstyle);
label("$X_B$", (-0.59,-2.67), NE * labelscalefactor);
dot((2.62,-4.14),linewidth(4pt) + dotstyle);
label("$M_A$", (2.69,-3.99), NE * labelscalefactor);
dot((-1.207373023347141,2.157029928327833),linewidth(4pt) + dotstyle);
label("$P^*$", (-1.13,2.31), NE * labelscalefactor);
dot((5.33,3.61),dotstyle);
label("$M_B^*$", (5.41,3.81), NE * labelscalefactor);
dot((3.03,-6.83),dotstyle);
label("$M_A^*$", (3.11,-6.63), NE * labelscalefactor);
dot((-6.97,3.47),dotstyle);
label("$M_C^*$", (-6.89,3.67), NE * labelscalefactor);
dot((-4.624746046694282,5.764059856655666),dotstyle);
label("$\widehat P$", (-4.55,5.97), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](//latex.artofproblemsolving.com/a/e/8/ae8e5ed1fefcbe81486d34b4be7de7c69b7e04a1.png)
Let
be the midpoints of
respectively. Then clearly
lies on a Conic. By Converse of Pascal's Theorem on
and also it's easy to notice that the Conic formed is the Locus of the Center of those Hyperbolas
passing through
(Why?)
. So Clearly the Center of
which is
from Lemma 2 must lie on this Conic. Now take a Homothety at
mapping
to
. We get the desired result. 
Remark:- Try using
to prove that the Locus of the Centers of the Hyperbolas
passing through
where
is the Centroid of
. Is the Steiner Inellipse of
.
Proof of Lemma 6:-
Notice that from Lemma 1 the Orthocenter
of
lies on
and the reflection of
over
lies on
. Let this point be
. So the Isogonal Conjugte of
is the Line joining the Isogonal Conjugates of
WRT
which is the Perpendicular bisector of
. Similary for
and
. 
Bonus:- Try finding more properties!
We will end our discussion after solving two Problems which involves Antigonal Conjugates.
Take a Negative Homothety at
with a scale factor of
. So the problem transforms to this one.
Proposition:-
be a triangle with a point
in it's plane and let
be the
WRT
. Let
and let
be the midpoints of
respectively. Then
intersect on 
Proof:- Let
and let
be the Poncelet Point of
. We claim that
concur at the Poncelet Point of
. Notice that
and similarly we get that
. Similarly we get that
and
. So,
concur at the Poncelet Point of
. So now transform back.
We get that
are concurrent at
. The Point of Concurrency is the
of
.
Now here is a harder problem proposed by @buratinogigle. It is also the P127 of the famous GeoZebra Marathon. We will extensively use our Lemmas in this problem. Here goes the problem and my Solution.
![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -26.408453486015034, xmax = 27.107031745977462, ymin = -14.562765893491065, ymax = 9.596373113535464; /* image dimensions */
pen qqttzz = rgb(0,0.2,0.6);
/* draw figures */
draw((xmin, 4.008403361344537*xmin + 15.841512605042016)--(xmax, 4.008403361344537*xmax + 15.841512605042016), linewidth(0.8)); /* line */
draw((xmin, 0.01754385964912279*xmin-3.873333333333334)--(xmax, 0.01754385964912279*xmax-3.873333333333334), linewidth(0.8)); /* line */
draw((xmin, -0.9173228346456693*xmin + 3.231653543307087)--(xmax, -0.9173228346456693*xmax + 3.231653543307087), linewidth(0.8)); /* line */
draw((xmin, 0.23694018521389304*xmin + 1.7294420252666707)--(xmax, 0.23694018521389304*xmax + 1.7294420252666707), linewidth(0.4)); /* line */
draw((xmin, -0.20017694148807477*xmin-9.43332043214197)--(xmax, -0.20017694148807477*xmax-9.43332043214197), linewidth(0.4)); /* line */
draw((xmin, -0.7783864084613183*xmin-1.7142370359195227)--(xmax, -0.7783864084613183*xmax-1.7142370359195227), linewidth(0.4)); /* line */
draw(circle((1.5095621309330547,-14.085041463184131), 12.004720584501898), linewidth(0.8) + red);
pair hyperbolaLeft1 (real t) {return (1.0923863821057558*(1+t^2)/(1-t^2),1.0923863821057558*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (1.0923863821057558*(-1-t^2)/(1-t^2),1.0923863821057558*(-2)*t/(1-t^2));}
draw(shift((-4.13148719458663,-1.2365818293833253))*rotate(-147.28342646627334)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + qqttzz); draw(shift((-4.13148719458663,-1.2365818293833253))*rotate(-147.28342646627334)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + qqttzz); /* hyperbola construction */
draw((xmin, -0.6000748066769415*xmin + 0.3198024459780313)--(xmax, -0.6000748066769415*xmax + 0.3198024459780313), linewidth(0.4)); /* line */
draw((xmin, -0.19002617507558908*xmin-2.021672538344399)--(xmax, -0.19002617507558908*xmax-2.021672538344399), linewidth(0.4)); /* line */
/* dots and labels */
dot((-2.56,5.58),dotstyle);
label("$A$", (-2.438303832368012,5.879582497069844), NE * labelscalefactor);
dot((-4.94,-3.96),dotstyle);
label("$B$", (-4.800670749613119,-3.6328816230370813), NE * labelscalefactor);
dot((7.6,-3.74),dotstyle);
label("$C$", (7.735623024567583,-3.4123940440942055), NE * labelscalefactor);
dot((0.5225293705791998,-2.120966796000219),dotstyle);
label("$P_1$", (0.5540275961424571,-1.428005833608324), NE * labelscalefactor);
dot((-8.785503759752462,-0.35219686276643136),dotstyle);
label("$P_2$", (-8.674952493895095,-0.04208390882453335), NE * labelscalefactor);
dot((-1.6841270382794864,1.330404652893004),linewidth(4pt) + dotstyle);
label("$Q_1$", (-1.5563535165965052,1.5958238204654007), NE * labelscalefactor);
dot((-11.407218944492547,7.164987148815941),linewidth(4pt) + dotstyle);
label("$Q_2$", (-11.289305215646348,7.422995549669975), NE * labelscalefactor);
dot((13.349977537776379,-12.105678104588545),linewidth(4pt) + dotstyle);
label("$X$", (13.468300077082377,-11.85391849505002), NE * labelscalefactor);
dot((-3.391695916011611,0.925812966737675),linewidth(4pt) + dotstyle);
label("$V$", (-3.2572576970129825,1.1863468881429173), NE * labelscalefactor);
dot((5.710237283754192,-3.106767088150229),linewidth(4pt) + dotstyle);
label("$U$", (5.845729490771498,-2.845425983955382), NE * labelscalefactor);
dot((1.2702179534540083,-0.44242334687846196),linewidth(4pt) + dotstyle);
label("$O$", (1.4044796863506959,-0.19957503664087317), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](//latex.artofproblemsolving.com/c/0/2/c022f519526e1276e4c3b2222ce6fae50ef73c13.png)
We state Two Lemmas.
(Well known) Consider two arbitrary points
in the plain of
. Let
be the isogonal conjugate of
WRT
respectively. Let
prove that
is isogonal conjugate of
WRT
.
Let
denote the isogonal conjugate of
WRT
Then
is the image of
under the involution defined by
But by dual of Desargues involution theorem for the complete quadrilateral
it follows that
is the image of
under the involution defined by
and cyclically we get
(Proof by @Luis Gonzalez)
(Well known)
be a triangle then
points
on the Isogonal Conjugate of the Perpendicular Bisector of
.
.
Let
be the Isogonal Conjuagte of
WRT
. Then
.
____________________________________________________________________________________________
Coming back to the Problem. Let
bee the Rectangular Hyperbola passing through
. From Lemma 3 we get
are Antipodal Points WRT the Rectangular Hyperbola
passing through
. Let
and
. Now from
we get that
are Isogonal Conjugates. From Lemma 6 we get that
is the perpendicular bisector of
WRT
and from
we get that
. Let
be the reflection of
over
.Let
be the reflection of
over
and clearly
and
. Now combining with
we get
. So
.
I hope this will help y'all. If you have any better suggestions and problems write in the Comment box below. Goodbye!
Properties of Poncelet Point





Throughout we will assume


Property 1:- If



Property 2:- If




Property 3:- If




Exercise:- Prove that the concurrency of the Nine Point Circles of

We will come back to the Proof of Property 3 later. Before that let's move onto some Hyperbola, we will be resorting to that often!


The Hyperbolas which have perpendicular Asymptotes fall into the category of Rectangular Hyperbolas.
Basic Properties of Rectangular Hyperbolas
Lemma 1:- The Orthocenter




We give an Elementary proof of this Lemma (rather non-standard). Let















![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -1.65, xmax = 24.69, ymin = -8.11, ymax = 7.23; /* image dimensions */
/* draw figures */
draw((xmin, 3.097142857142857*xmin-17.25594285714286)--(xmax, 3.097142857142857*xmax-17.25594285714286), linewidth(0.8)); /* line */
draw((xmin, 0.012302284710017548*xmin-5.317609841827768)--(xmax, 0.012302284710017548*xmax-5.317609841827768), linewidth(0.8)); /* line */
draw((xmin, -1.3578680203045685*xmin + 15.577487309644672)--(xmax, -1.3578680203045685*xmax + 15.577487309644672), linewidth(0.8)); /* line */
draw((xmin, -0.32287822878228767*xmin-0.20610701107011303)--(xmax, -0.32287822878228767*xmax-0.20610701107011303), linewidth(0.8)); /* line */
draw((xmin, -81.28571428571446*xmin + 604.6457142857157)--(xmax, -81.28571428571446*xmax + 604.6457142857157), linewidth(0.8)); /* line */
draw((xmin, -0.23317307692307696*xmin + 7.288485576923076)--(xmax, -0.23317307692307696*xmax + 7.288485576923076), linewidth(0.8)); /* line */
draw((xmin, -0.23317307692307696*xmin-4.367620192307691)--(xmax, -0.23317307692307696*xmax-4.367620192307691), linewidth(0.8)); /* line */
draw((xmin, 4.288659793814432*xmin-34.65768143449571)--(xmax, 4.288659793814432*xmax-34.65768143449571), linewidth(0.8)); /* line */
draw((xmin, 0.8757354665527641*xmin-11.795782323472524)--(xmax, 0.8757354665527641*xmax-11.795782323472524), linewidth(0.8)); /* line */
draw((xmin, 4.288659793814432*xmin-70.53206185567008)--(xmax, 4.288659793814432*xmax-70.53206185567008), linewidth(0.8)); /* line */
draw(circle((11.31,0.22), 6.644253155923547), linewidth(0.4));
draw(circle((5.670367057000454,-3.9441222047510682), 2.235905514074025), linewidth(0.4));
/* dots and labels */
dot((7.37,5.57),dotstyle);
label("$B$", (6.81,5.87), NE * labelscalefactor);
dot((3.87,-5.27),dotstyle);
label("$A$", (3.31,-5.67), NE * labelscalefactor);
dot((15.25,-5.13),dotstyle);
label("$C$", (15.71,-5.61), NE * labelscalefactor);
dot((7.470734114000905,-2.618244409502138),linewidth(4pt) + dotstyle);
label("$H$", (7.55,-2.45), NE * labelscalefactor);
dot((7.502806954695655,-5.225308174546803),linewidth(4pt) + dotstyle);
label("$B'$", (7.75,-5.63), NE * labelscalefactor);
dot((6.69862467456647,-5.9295591188292),linewidth(4pt) + dotstyle);
label("$U$", (6.77,-6.37), NE * labelscalefactor);
dot((17.209956594415363,3.2755870440906327),linewidth(4pt) + dotstyle);
label("$V$", (17.29,3.43), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](http://latex.artofproblemsolving.com/7/b/f/7bf609ce1994c29391ac130b03f864e3001e14d6.png)





Lemma 2:- The Center of


Let





























































The above Proof of Lemma 2 was by @Alastor Moody here. Any way I give another Proof for Lemma 2 which will further prove that the Center of the Rectangular




Before Proving Lemma 2 we start with a Theorem.
Theorem:- Let








It's fairly easy to see that



















So we proved Lemma 2.
Now we are ready to prove Property 3 mentioned above.
Lemma:- Given a

















Let














![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -15.842401898734185, xmax = 22.075934810126604, ymin = -10.103860759493674, ymax = 11.24605316455697; /* image dimensions */
/* draw figures */
draw((xmin, 4.568714416151212*xmin + 21.662856469515518)--(xmax, 4.568714416151212*xmax + 21.662856469515518), linewidth(0.8)); /* line */
draw((xmin, 0.007788161993769443*xmin-4.744906542056075)--(xmax, 0.007788161993769443*xmax-4.744906542056075), linewidth(0.8)); /* line */
draw((xmin, -1.0716650680340856*xmin + 2.8652387296403026)--(xmax, -1.0716650680340856*xmax + 2.8652387296403026), linewidth(0.8)); /* line */
draw((xmin, -3.5116785471619987*xmin-5.266561761690379)--(xmax, -3.5116785471619987*xmax-5.266561761690379), linewidth(0.4)); /* line */
draw((xmin, 0.625*xmin-1.17125)--(xmax, 0.625*xmax-1.17125), linewidth(0.4)); /* line */
draw((xmin, -0.3606965174129354*xmin-2.147089552238806)--(xmax, -0.3606965174129354*xmax-2.147089552238806), linewidth(0.4)); /* line */
draw((xmin, -0.9272185087388412*xmin-4.88349319466219)--(xmax, -0.9272185087388412*xmax-4.88349319466219), linewidth(0.4)); /* line */
draw((xmin, 2.0028278005435047*xmin-4.449201843921155)--(xmax, 2.0028278005435047*xmax-4.449201843921155), linewidth(0.4)); /* line */
draw((xmin, 0.09994520887466238*xmin + 0.07789326743154854)--(xmax, 0.09994520887466238*xmax + 0.07789326743154854), linewidth(0.4)); /* line */
draw((xmin, -5.494449467187799*xmin-5.560447990839757)--(xmax, -5.494449467187799*xmax-5.560447990839757), linewidth(0.4)); /* line */
draw((xmin, 2.9774754756368607*xmin + 13.976884698854816)--(xmax, 2.9774754756368607*xmax + 13.976884698854816), linewidth(0.4)); /* line */
draw((xmin, -0.3358549913114254*xmin-2.0271004899458607)--(xmax, -0.3358549913114254*xmax-2.0271004899458607), linewidth(0.4)); /* line */
draw((xmin, -1.4502647138281781*xmin + 3.765954629369643)--(xmax, -1.4502647138281781*xmax + 3.765954629369643), linewidth(0.4)); /* line */
draw((xmin, 0.689529291077047*xmin-1.324769843763852)--(xmax, 0.689529291077047*xmax-1.324769843763852), linewidth(0.4)); /* line */
pair hyperbolaLeft1 (real t) {return (4.1547889871044115*(1+t^2)/(1-t^2),4.1547889871044115*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (4.1547889871044115*(-1-t^2)/(1-t^2),4.1547889871044115*(-2)*t/(1-t^2));}
draw(shift((-3.1406908410689613,2.08904391317063))*rotate(-75.32413781366773)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.8)); draw(shift((-3.1406908410689613,2.08904391317063))*rotate(-75.32413781366773)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.8)); /* hyperbola construction */
draw((xmin, 0.1820018558677955*xmin-4.719084595081908)--(xmax, 0.1820018558677955*xmax-4.719084595081908), linewidth(0.4)); /* line */
/* dots and labels */
dot((-3.332686708860754,6.436762658227854),dotstyle);
label("$A$", (-4.111068987341767,6.6591575949367146), NE * labelscalefactor);
dot((-5.79,-4.79),dotstyle);
label("$B$", (-6.140422784810124,-4.432789873417722), NE * labelscalefactor);
dot((7.05,-4.69),dotstyle);
label("$C$", (7.147674683544319,-4.4049905063291135), NE * labelscalefactor);
dot((-0.99,-1.79),dotstyle);
label("$P$", (-0.8863424050632832,-1.5138563291139224), NE * labelscalefactor);
dot((-0.14821996135870136,-4.746060903125846),linewidth(4pt) + dotstyle);
label("$X$", (0.2812310126582368,-5.26677088607595), NE * labelscalefactor);
dot((2.3790722197854612,0.31567013736591315),linewidth(4pt) + dotstyle);
label("$Y$", (2.4773810126582387,0.5432968354430405), NE * labelscalefactor);
dot((-4.830180794957348,-0.40486016102284644),linewidth(4pt) + dotstyle);
label("$Z$", (-5.139645569620249,0.18190506329114164), NE * labelscalefactor);
dot((5.198317102109108,-3.772981235108749),linewidth(4pt) + dotstyle);
label("$F$", (5.312916455696216,-3.543210126582278), NE * labelscalefactor);
dot((-6.687943381658956,-5.936302702482577),linewidth(4pt) + dotstyle);
label("$E$", (-7.252397468354428,-5.739360126582279), NE * labelscalefactor);
dot((-2.306126744694759,7.110448872815898),linewidth(4pt) + dotstyle);
label("$D$", (-2.1929126582278413,7.659934810126589), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](http://latex.artofproblemsolving.com/6/c/a/6cad8731ef7c51229dfac07cf8f2e7447032cb71.png)
Phew! So we have learned about some basic and elementary properties of Poncelet Point and Conics. Now it's time for us to work with Antigonal Conjuagtes! We define



Properties of Antigonal Conjugtes







Now we will talk about some well known Properties of Antigonal Conjugates.
Lemma 1:-

Lemma 2:-



Lemma 3:-



Lemma 3:-



Lemma 5:- Let







Lemma 6:- The Rectangular Hyperbola




Lemma 7:- Let





Try angle chasing (Lemma 1 , Lemma 2 and Lemma 7) and Lemma 3 is trivial from Lemma 2. So I will just prove Lemma 5 and Lemma 6.
Proof of Lemma 5
![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -13.75, xmax = 15.41, ymin = -7.87, ymax = 7.47; /* image dimensions */
pen qqttzz = rgb(0,0.2,0.6);
/* draw figures */
draw((xmin, 4.53913043478261*xmin + 11.813130434782611)--(xmax, 4.53913043478261*xmax + 11.813130434782611), linewidth(0.8) + qqttzz); /* line */
draw((xmin, 0.011382113821138186*xmin-4.169821138211383)--(xmax, 0.011382113821138186*xmax-4.169821138211383), linewidth(0.8) + qqttzz); /* line */
draw((xmin, -1.03*xmin + 4.9631)--(xmax, -1.03*xmax + 4.9631), linewidth(0.8) + qqttzz); /* line */
pair hyperbolaLeft1 (real t) {return (3.7648470037776307*(1+t^2)/(1-t^2),3.7648470037776307*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (3.7648470037776307*(-1-t^2)/(1-t^2),3.7648470037776307*(-2)*t/(1-t^2));}
draw(shift((-1.207373023347141,2.157029928327833))*rotate(-74.02819642656856)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.8)); draw(shift((-1.207373023347141,2.157029928327833))*rotate(-74.02819642656856)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.8)); /* hyperbola construction */
draw((2.21,-1.45)--(-1.23,6.23), linewidth(0.4));
draw((2.21,-1.45)--(-3.53,-4.21), linewidth(0.4));
draw((2.21,-1.45)--(8.77,-4.07), linewidth(0.4)); draw(shift((1.555,-0.875))*rotate(150.97180357343146)*xscale(4.373670789935975)*yscale(2.8581171359992825)*unitcircle, linewidth(0.4) + red); draw(shift((0.9,-0.3))*rotate(-29.028196426568545)*xscale(8.74734157987195)*yscale(5.716234271998564)*unitcircle, linewidth(0.4) + red);
draw((2.21,-1.45)--(5.33,3.61), linewidth(0.4));
draw((2.21,-1.45)--(-6.97,3.47), linewidth(0.4));
draw((2.21,-1.45)--(-4.624746046694282,5.764059856655666), linewidth(0.4));
draw((2.21,-1.45)--(3.03,-6.83), linewidth(0.4));
/* dots and labels */
dot((-1.23,6.23),dotstyle);
label("$A$", (-1.15,6.43), NE * labelscalefactor);
dot((-3.53,-4.21),dotstyle);
label("$B$", (-3.45,-4.01), NE * labelscalefactor);
dot((8.77,-4.07),dotstyle);
label("$C$", (8.85,-3.87), NE * labelscalefactor);
dot((-1.1376080880630828,-1.8872894058864897),linewidth(4pt) + dotstyle);
label("$H$", (-1.05,-1.73), NE * labelscalefactor);
dot((2.21,-1.45),dotstyle);
label("$P$", (2.29,-1.25), NE * labelscalefactor);
dot((0.49,2.39),linewidth(4pt) + dotstyle);
label("$X_A$", (0.57,2.55), NE * labelscalefactor);
dot((5.49,-2.76),linewidth(4pt) + dotstyle);
label("$X_C$", (5.57,-2.61), NE * labelscalefactor);
dot((3.77,1.08),linewidth(4pt) + dotstyle);
label("$M_B$", (3.85,1.23), NE * labelscalefactor);
dot((-2.38,1.01),linewidth(4pt) + dotstyle);
label("$M_C$", (-2.31,1.17), NE * labelscalefactor);
dot((-0.66,-2.83),linewidth(4pt) + dotstyle);
label("$X_B$", (-0.59,-2.67), NE * labelscalefactor);
dot((2.62,-4.14),linewidth(4pt) + dotstyle);
label("$M_A$", (2.69,-3.99), NE * labelscalefactor);
dot((-1.207373023347141,2.157029928327833),linewidth(4pt) + dotstyle);
label("$P^*$", (-1.13,2.31), NE * labelscalefactor);
dot((5.33,3.61),dotstyle);
label("$M_B^*$", (5.41,3.81), NE * labelscalefactor);
dot((3.03,-6.83),dotstyle);
label("$M_A^*$", (3.11,-6.63), NE * labelscalefactor);
dot((-6.97,3.47),dotstyle);
label("$M_C^*$", (-6.89,3.67), NE * labelscalefactor);
dot((-4.624746046694282,5.764059856655666),dotstyle);
label("$\widehat P$", (-4.55,5.97), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](http://latex.artofproblemsolving.com/a/e/8/ae8e5ed1fefcbe81486d34b4be7de7c69b7e04a1.png)
Let













Remark:- Try using






Proof of Lemma 6:-
Notice that from Lemma 1 the Orthocenter














Bonus:- Try finding more properties!
We will end our discussion after solving two Problems which involves Antigonal Conjugates.
ISL 2018 G4 wrote:
A point
is chosen inside a triangle
. Let
,
, and
be the reflections of
in
,
, and
, respectively. Let
be the circumcircle of the triangle
. The lines
,
, and
meet
again at
,
, and
, respectively. Prove that the lines
,
, and
are concurrent on
.






















Take a Negative Homothety at


Proposition:-










Proof:- Let











We get that





Now here is a harder problem proposed by @buratinogigle. It is also the P127 of the famous GeoZebra Marathon. We will extensively use our Lemmas in this problem. Here goes the problem and my Solution.
Buratinogigle wrote:
Let
be a triangle and
are two antigonal conjugate points.
are isogonal conjugate of
. Reflection of line
thourgh
cuts line
at
,Prove that 









![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -26.408453486015034, xmax = 27.107031745977462, ymin = -14.562765893491065, ymax = 9.596373113535464; /* image dimensions */
pen qqttzz = rgb(0,0.2,0.6);
/* draw figures */
draw((xmin, 4.008403361344537*xmin + 15.841512605042016)--(xmax, 4.008403361344537*xmax + 15.841512605042016), linewidth(0.8)); /* line */
draw((xmin, 0.01754385964912279*xmin-3.873333333333334)--(xmax, 0.01754385964912279*xmax-3.873333333333334), linewidth(0.8)); /* line */
draw((xmin, -0.9173228346456693*xmin + 3.231653543307087)--(xmax, -0.9173228346456693*xmax + 3.231653543307087), linewidth(0.8)); /* line */
draw((xmin, 0.23694018521389304*xmin + 1.7294420252666707)--(xmax, 0.23694018521389304*xmax + 1.7294420252666707), linewidth(0.4)); /* line */
draw((xmin, -0.20017694148807477*xmin-9.43332043214197)--(xmax, -0.20017694148807477*xmax-9.43332043214197), linewidth(0.4)); /* line */
draw((xmin, -0.7783864084613183*xmin-1.7142370359195227)--(xmax, -0.7783864084613183*xmax-1.7142370359195227), linewidth(0.4)); /* line */
draw(circle((1.5095621309330547,-14.085041463184131), 12.004720584501898), linewidth(0.8) + red);
pair hyperbolaLeft1 (real t) {return (1.0923863821057558*(1+t^2)/(1-t^2),1.0923863821057558*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (1.0923863821057558*(-1-t^2)/(1-t^2),1.0923863821057558*(-2)*t/(1-t^2));}
draw(shift((-4.13148719458663,-1.2365818293833253))*rotate(-147.28342646627334)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + qqttzz); draw(shift((-4.13148719458663,-1.2365818293833253))*rotate(-147.28342646627334)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + qqttzz); /* hyperbola construction */
draw((xmin, -0.6000748066769415*xmin + 0.3198024459780313)--(xmax, -0.6000748066769415*xmax + 0.3198024459780313), linewidth(0.4)); /* line */
draw((xmin, -0.19002617507558908*xmin-2.021672538344399)--(xmax, -0.19002617507558908*xmax-2.021672538344399), linewidth(0.4)); /* line */
/* dots and labels */
dot((-2.56,5.58),dotstyle);
label("$A$", (-2.438303832368012,5.879582497069844), NE * labelscalefactor);
dot((-4.94,-3.96),dotstyle);
label("$B$", (-4.800670749613119,-3.6328816230370813), NE * labelscalefactor);
dot((7.6,-3.74),dotstyle);
label("$C$", (7.735623024567583,-3.4123940440942055), NE * labelscalefactor);
dot((0.5225293705791998,-2.120966796000219),dotstyle);
label("$P_1$", (0.5540275961424571,-1.428005833608324), NE * labelscalefactor);
dot((-8.785503759752462,-0.35219686276643136),dotstyle);
label("$P_2$", (-8.674952493895095,-0.04208390882453335), NE * labelscalefactor);
dot((-1.6841270382794864,1.330404652893004),linewidth(4pt) + dotstyle);
label("$Q_1$", (-1.5563535165965052,1.5958238204654007), NE * labelscalefactor);
dot((-11.407218944492547,7.164987148815941),linewidth(4pt) + dotstyle);
label("$Q_2$", (-11.289305215646348,7.422995549669975), NE * labelscalefactor);
dot((13.349977537776379,-12.105678104588545),linewidth(4pt) + dotstyle);
label("$X$", (13.468300077082377,-11.85391849505002), NE * labelscalefactor);
dot((-3.391695916011611,0.925812966737675),linewidth(4pt) + dotstyle);
label("$V$", (-3.2572576970129825,1.1863468881429173), NE * labelscalefactor);
dot((5.710237283754192,-3.106767088150229),linewidth(4pt) + dotstyle);
label("$U$", (5.845729490771498,-2.845425983955382), NE * labelscalefactor);
dot((1.2702179534540083,-0.44242334687846196),linewidth(4pt) + dotstyle);
label("$O$", (1.4044796863506959,-0.19957503664087317), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](http://latex.artofproblemsolving.com/c/0/2/c022f519526e1276e4c3b2222ce6fae50ef73c13.png)
We state Two Lemmas.










Let























Let




____________________________________________________________________________________________
Coming back to the Problem. Let


























I hope this will help y'all. If you have any better suggestions and problems write in the Comment box below. Goodbye!
This post has been edited 11 times. Last edited by amar_04, Aug 14, 2020, 7:11 PM