Random quick geo lemmas
by Inconsistent, Sep 26, 2021, 1:22 AM
Ever see the condition come up
? Not sure what it means? Well one way to interpret it is that the center of spiral similarity from the segment
to
is the point
on the circumcircle of
such that
. This comes from
after
.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); unitsize(30);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -10.457861904816939, xmax = 4.966382807294912, ymin = -4.336543019812374, ymax = 6.20830120164101; /* image dimensions */
pen qqwuqq = rgb(0,0.39215686274509803,0);
draw(arc((-6.34,-0.21),0.4449301359263034,50.82615299044904,66.42867268465027)--(-6.34,-0.21)--cycle, linewidth(1) + qqwuqq);
draw(arc((3.22,-0.23),0.4449301359263034,128.93411606425818,144.53663575845943)--(3.22,-0.23)--cycle, linewidth(1) + qqwuqq);
/* draw figures */
draw(circle((-1.5578941209700194,0.7866101763305489), 4.884850917051483), linewidth(1));
draw((-6.34,-0.21)--(3.22,-0.23), linewidth(1));
draw(circle((-2.0119933619256116,2.425966215820826), 3.2785300593657425), linewidth(1));
draw((-5.283503068252974,2.2115283656856604)--(-6.34,-0.21), linewidth(1));
draw((-5.730190237421473,0.965179524434851)--(-5.8933128308315,1.0363488412508102), linewidth(1));
draw((-5.283503068252974,2.2115283656856604)--(-4.08,4.97), linewidth(1));
draw((-4.08,4.97)--(1.068153770457503,1.302821971728902), linewidth(1));
draw((1.068153770457503,1.302821971728902)--(3.22,-0.23), linewidth(1));
draw((2.1957050013407637,0.608888918098619)--(2.092448769116741,0.46393305363028287), linewidth(1));
draw((-6.34,-0.21)--(-1.5476747899503867,5.671450403716929), linewidth(1));
draw((-4.036243246851684,2.7581917891858714)--(-3.8982734547739297,2.645771201165327), linewidth(1));
draw((-3.989401335176457,2.815679202551603)--(-3.851431543098703,2.7032586145310584), linewidth(1));
draw((-1.5476747899503867,5.671450403716929)--(3.22,-0.23), linewidth(1));
draw((0.8820816009049207,2.8054878156560346)--(0.7436426395488169,2.6936454886259376), linewidth(1));
draw((0.9286825705007941,2.747804915090992)--(0.7902436091446904,2.6359625880608952), linewidth(1));
draw((-5.283503068252974,2.2115283656856604)--(-1.5476747899503867,5.671450403716929), linewidth(1));
draw((1.068153770457503,1.302821971728902)--(-1.5476747899503867,5.671450403716929), linewidth(1));
/* dots and labels */
dot((-4.08,4.97),dotstyle);
label("$A$", (-4.021205938416417,5.125637870887006), NW * labelscalefactor);
dot((-6.34,-0.21),dotstyle);
label("$B$", (-6.275518627109687,-0.06521371491986393), SW * 2);
dot((3.22,-0.23),dotstyle);
label("$C$", (3.275648290774959,-0.0800447194507407), SE * labelscalefactor);
dot((-5.283503068252974,2.2115283656856604),dotstyle);
label("$D$", (-5.222517305417436,2.3670710281439264), SW *2);
dot((1.068153770457503,1.302821971728902),linewidth(4pt) + dotstyle);
label("$E$", (1.1251526337978262,1.4178867381678133), E * labelscalefactor);
dot((-1.5476747899503867,5.671450403716929),linewidth(4pt) + dotstyle);
label("$H$", (-1.4851041636364872,5.793033074776461), N * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/a/8/d/a8d184be3398e0b8d3e9db876f689f27a8240b16.png)
Here's another random one: If cevians
concur, then sometimes we will wonder about properties of
on the sides of
respectively. We know
swap under the nice inversion at the harmonic conjugate of
on
when the concurrence is due to Miquel (meaning
). Here's another one: if
, then
is a harmonic bundle. This is by projecting the ceva-menelaus on
via
onto
, then projecting via
onto
.
Another thing that isn't really a lemma, when there is an arbitrary point on
that is the sole degree of freedom beyond the triangle, it might be a good idea, in general, to consider its projection via
onto
when experimenting for similar triangles and cyclic quadrilaterals.








![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); unitsize(30);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -10.457861904816939, xmax = 4.966382807294912, ymin = -4.336543019812374, ymax = 6.20830120164101; /* image dimensions */
pen qqwuqq = rgb(0,0.39215686274509803,0);
draw(arc((-6.34,-0.21),0.4449301359263034,50.82615299044904,66.42867268465027)--(-6.34,-0.21)--cycle, linewidth(1) + qqwuqq);
draw(arc((3.22,-0.23),0.4449301359263034,128.93411606425818,144.53663575845943)--(3.22,-0.23)--cycle, linewidth(1) + qqwuqq);
/* draw figures */
draw(circle((-1.5578941209700194,0.7866101763305489), 4.884850917051483), linewidth(1));
draw((-6.34,-0.21)--(3.22,-0.23), linewidth(1));
draw(circle((-2.0119933619256116,2.425966215820826), 3.2785300593657425), linewidth(1));
draw((-5.283503068252974,2.2115283656856604)--(-6.34,-0.21), linewidth(1));
draw((-5.730190237421473,0.965179524434851)--(-5.8933128308315,1.0363488412508102), linewidth(1));
draw((-5.283503068252974,2.2115283656856604)--(-4.08,4.97), linewidth(1));
draw((-4.08,4.97)--(1.068153770457503,1.302821971728902), linewidth(1));
draw((1.068153770457503,1.302821971728902)--(3.22,-0.23), linewidth(1));
draw((2.1957050013407637,0.608888918098619)--(2.092448769116741,0.46393305363028287), linewidth(1));
draw((-6.34,-0.21)--(-1.5476747899503867,5.671450403716929), linewidth(1));
draw((-4.036243246851684,2.7581917891858714)--(-3.8982734547739297,2.645771201165327), linewidth(1));
draw((-3.989401335176457,2.815679202551603)--(-3.851431543098703,2.7032586145310584), linewidth(1));
draw((-1.5476747899503867,5.671450403716929)--(3.22,-0.23), linewidth(1));
draw((0.8820816009049207,2.8054878156560346)--(0.7436426395488169,2.6936454886259376), linewidth(1));
draw((0.9286825705007941,2.747804915090992)--(0.7902436091446904,2.6359625880608952), linewidth(1));
draw((-5.283503068252974,2.2115283656856604)--(-1.5476747899503867,5.671450403716929), linewidth(1));
draw((1.068153770457503,1.302821971728902)--(-1.5476747899503867,5.671450403716929), linewidth(1));
/* dots and labels */
dot((-4.08,4.97),dotstyle);
label("$A$", (-4.021205938416417,5.125637870887006), NW * labelscalefactor);
dot((-6.34,-0.21),dotstyle);
label("$B$", (-6.275518627109687,-0.06521371491986393), SW * 2);
dot((3.22,-0.23),dotstyle);
label("$C$", (3.275648290774959,-0.0800447194507407), SE * labelscalefactor);
dot((-5.283503068252974,2.2115283656856604),dotstyle);
label("$D$", (-5.222517305417436,2.3670710281439264), SW *2);
dot((1.068153770457503,1.302821971728902),linewidth(4pt) + dotstyle);
label("$E$", (1.1251526337978262,1.4178867381678133), E * labelscalefactor);
dot((-1.5476747899503867,5.671450403716929),linewidth(4pt) + dotstyle);
label("$H$", (-1.4851041636364872,5.793033074776461), N * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/a/8/d/a8d184be3398e0b8d3e9db876f689f27a8240b16.png)
Here's another random one: If cevians














Another thing that isn't really a lemma, when there is an arbitrary point on



Reason: edit