PROBLEM 27463, GMB 12/2017, p. 605

by cip1703, Jan 6, 2018, 1:59 PM

Determine strictly increasing functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that $\frac{f(x)+f(y)}{1+f(x+y)}$ is not null natural number, for any $x,y\in \mathbb{N}$.

(Lucian Dragomir, O\c telu-Ro\c su \c si Nicolae St\u aniloiu, Boc\ sa)

Solution Cip

Answer: $f(x)=ax+1,$ $ a\in \mathbb{N}, a\geq 1$

Solution:
For $x=y=0$ we have $\frac{2f(0)}{1+f(0)}\in \mathbb{N}^{\bigstar }$$$
 \Leftrightarrow 2-\frac{2}{1+f(0)}\in \mathbb{N}^{\bigstar }\Rightarrow f(0)=1.$$The fonction $f$ being strictly increasing, we have $f(x+y)>f(x),f(y)$ for all $x,y\geq 1 $, so $2f(x+y)>f(x)+f(y)$, then
$$0<\frac{f(x)+f(y)}{1+f(x+y)}<\frac{2f(x+y)}{1+f(x+y)}=2-\frac{2}{1+f(x+y)}<2.$$It follows that $\frac{f(x)+f(y)}{1+f(x+y)}=1$, so
$$f(x)+f(y)=f(x+y)+1,$$for all $x,y\geq 1 $.
For $y=1$ we get $f(x+1)-f(x)=f(1)-1$, and noting $a=f(1)-1$ we have $a> f(0)-1=0$. From $f(x+1)=f(x)+a$ we get by mathematical induction that $f(x)=ax+1,$ for all $x \in \mathbb{N}$.
Conversely, all such fonctions satisfies the terms of the statement.
$\raggedleft \blacksquare $
This post has been edited 3 times. Last edited by cip1703, Jan 17, 2018, 6:01 AM
Reason: typo mistake

Comment

J
U VIEW ATTACHMENTS T PREVIEW J CLOSE PREVIEW rREFRESH
J

0 Comments

Miscellanea

avatar

cip1703
Shouts
Submit
  • First Shout < :D

    by puppy75, Jan 6, 2018, 2:48 PM

1 shout
Tags
About Owner
  • Posts: 33
  • Joined: Jun 5, 2008
Blog Stats
  • Blog created: Dec 6, 2017
  • Total entries: 4
  • Total visits: 243
  • Total comments: 0
Search Blog
a