52. Harmonical division.

by Virgil Nicula, Jul 9, 2010, 8:45 PM

$\underline{\overline{|<>Lemma<>|}}$ Let $AB$ and $\{C,D\}\subset AB$, the midpoints $M$ , $N$ of $[AB]$ , $[CD]$ respectively. Then the following relations are equivalently $:$

A0. There is $m\ne 1$, such that $\overline{CA}=m\cdot \overline{CB},\ \overline{DA}=-m\cdot \overline{DB}$, i.e. $(A,B,C,D)$ is a harmonical division.

$\blacktriangleleft\blacktriangleright$ A1. $AB^2+CD^2=4\cdot MN^2$ $\blacktriangleleft\blacktriangleright$ A2. $\left\{\begin{array}{c}
NC^2=\overline{NA}\cdot \overline{NB}\\\\
MA^2=\overline{MC}\cdot \overline{MD}\end{array}\right\|$ $\blacktriangleleft\blacktriangleright$ A3. $\left\{\begin{array}{c}
\overline{BC}\cdot \overline{BD}=\overline{BA}\cdot \overline{BN}\\\\
\overline{CA}\cdot \overline{CB}=\overline{CM}\cdot \overline{CD}\end{array}\right\|$ $\blacktriangleleft\blacktriangleright$ A4. $\left\{\begin{array}{c}
\overline{NA}\cdot \overline{NB}+\overline{NC}\cdot \overline {ND}=0\\\\
\overline{MC}\cdot \overline{MD}+\overline{MA}\cdot \overline{MB}=0\end{array}\right\|$

$\blacktriangleleft\blacktriangleright$ A5. $\left\{\begin{array}{c}
\frac{2}{\overline{AB}}=\frac{1}{\overline{AC}}+\frac{1}{\overline{AD}}\\\\
\frac{2}{\overline{CD}}=\frac{1}{\overline{AD}}+\frac{1}{\overline{BD}}\end{array}\right\|$ $\blacktriangleleft\blacktriangleright$ A6. $\overline{AD}\cdot\overline {BC}+\overline {AC}\cdot\overline{BD}=0$ $\blacktriangleleft\blacktriangleright$ A7. $\left\{\begin{array}{c}
\frac{2}{\overline{AB}}=\frac{1}{\overline{CB}}+\frac{1}{\overline{DB}}\\\\
\frac{2}{\overline{CD}}=\frac{1}{\overline{CA}}+\frac{1}{\overline{CB}}\end{array}\right\|$ $\blacktriangleleft\blacktriangleright$ A8. $\left\{\begin{array}{c}
\frac {BA}{BD}=2\cdot\frac {CA}{CD}\\\\
\frac {CD}{CA}=2\cdot\frac {BD}{BA}\end{array}\right\|$ $\blacktriangleleft\blacktriangleright$ A9. $\left\{\begin{array}{c}
\frac {CA}{CB}=\frac {AN}{NC}\\\\
\frac {BC}{BD}=\frac {BM}{MD}\end{array}\right\|$



Remark. With this lemma we will solve many proposed problems.

$P1\blacktriangleright$ Let $\triangle ABC$ , the midpoint $M$ of $[BC]$ , the orthic $\triangle DEF$ and $\left\{\begin{array}{c}
L\in BC\cap EF\\\\
S\in AM\cap LH\end{array}\right\|$ . Prove that $AM\perp LH$ and $\widehat{ASB}\equiv\widehat{ASC}\Longleftrightarrow AB=AC$ .

$P2\blacktriangleright$ Let $\triangle ABC$ with incircle $w=C(I,r)$ which touches it at $X\in BC$ , $Y\in CA$ , $Z\in AB$ and $T\in BC\cap YZ$ , $V\in TI\cap AX$. Prove that $TI\perp AX$ and $\widehat{AVB}\equiv\widehat{AVC}$

$P3\blacktriangleright$ Let $\triangle ABC$ , circumcentre $O$ , the orthocentre $H$ , point $D\in BC\cap AH$ , symmetrical point $E$ of $C$ w.r.t. $D$ , i.e. $DE=DC$ and point $F\in AB\cap HE$ . Prove that $DF\perp DO$

$P4\blacktriangleright$ Let $\triangle ABC$ , $AB\ne AC$, the centroid $G$ and $D\in BC$ , $GD\perp BC$. Ascertain $X\in AB$ , $Y\in AC$ for which $G\in XY$ and $\widehat{GDX}\equiv\widehat{GDY}$ .

$P5\blacktriangleright$ Let $C_k=C(O_k,r_k),\ k\in\overline{1,2}$ be two circles for which $O_1\in C_2$ , $\{A,B\}= C_1\cap C_2$ . Let $d$ be a line which pass

through $O_1$ , $R\in AB\cap d$ , $\{M,N\}=d\cap C_1$ and cut again $C_2$ in $P$ so that $N\in (RP)$ . Prove that $\widehat{NAP}\equiv\widehat{NAR}$ .

$P6\blacktriangleright$ Generalization. Let $\triangle ABC$ and for $P$ denote $D\in BC$ , $E\in CA$ , $F\in AB$ so that $BFPD$ , $CDPE$ are cyclically. Denote $m(\angle PDC)=$ $m(\angle PEA)=$

$m(\angle PFB)=\phi$ , $L\in EF\cap BC$ . The sideline $BC$ cut again circumcircle of $\triangle DEF$ in $K$ . Prove that $m\left(\widehat {LP,AK}\right)\in \{\phi ,\pi -\phi\}$ .

$P7\blacktriangleright$ Let $\triangle ABC$ with the circumcenter $O$ . Denote the projection $P$ of $O$ on the $A$-symmedian. Prove that $\widehat{APB}\equiv\widehat{APC}$ .


Particular cases.

$C1\blacktriangleright$ Let the "podar" $\triangle DEF$ of $\triangle ABC$ , where $D\in BC$ , $E\in CA$ , $F\in AB$ and $L\in EF\cap BC$ and $BC$ cut again circumcircle of $\triangle DEF$ in $K$ . Prove that $LP\perp AK$

$C2\blacktriangleright$ Let $ABC$ be a triangle with exincircle $C(I_a)$ which touches the sides of $\triangle ABC$ in $D\in BC$ , $E\in CA$ , $F\in AB$ . Denote $T\in BC\cap EF$ . Prove that $TI_a\perp AD$ .


$P8\blacktriangleright$ See
here


PP1. For an interior point $P$ of $\triangle ABC$ denote the intersections $(D,E,F)$ of $(AP,BP,CP)$ with opposite sidelines $(BC,CA,AB)$ respectively and

$T\in EF\cap BC$ . The $D$-bisectors of the triangles $ADB\ ,\ ADC$ meet the line $\overline {EFT}$ in $U\ ,\ V$ respectively. Prove that $BU\cap CV\cap AD\ne\emptyset$ .


Proof. Denote $S\in EF\cap AD$ , $R_1\in BU\cap AD$ and $R_2\in AD\cap CV$ . The division $(B,C;D,T)$ is harmonically and $DU\perp DV\ \wedge\ \widehat{UDT}\equiv\widehat{UDS}\implies$

the division $(U,V;S,T)$ is harmonically, i.e. $\left\{\begin{array}{c}
\frac {BD}{BT}=\frac {CD}{CT}\\\\
\frac {UT}{US}=\frac {VT}{VS}\end{array}\right\|\ (*)$ . Apply the Menelaus' theorem to the mentioned transversals $:$

$\left\{\begin{array}{cc}
\overline{R_1UB}/\triangle DST\ : & \frac {R_1S}{R_1D}\cdot\frac {BD}{BT}\cdot\frac {UT}{US}=1\\\\
\overline{R_2VC}/\triangle DST\ : & \frac {R_2S}{R_2D}\cdot\frac {CD}{CT}\cdot\frac {VT}{VS}=1\end{array}\right\|\stackrel{(*)}{\implies}$ $\frac {R_1S}{R_1D}=\frac {R_2S}{R_2D}\implies R_1\equiv R_2\equiv R\implies$ $R\in BU\cap CV\cap AD$ .



Lemma. Let $ \{C,D\}\subset d = AB$ so that $ \left|\begin{array}{c}
C\in (AB)\\\\
B\in (CD)\end{array}\right|$ . For $ P\not\in d$ let $ \left|\begin{array}{c}
m(\widehat {APC}) =x\\\\
m(\widehat {CPB}) =y\\\\
m(\widehat {BPD}) =z\end{array}\right|$ . Then $ C$ , $ D$ are ".h.c." w.r.t. $ A$ , $ B$ $\iff$ $\boxed{\cos (x+z)=\cos (y+x)\cdot\cos (y+z)}$ .

Proof. $\frac {CA}{CB} = \frac {DA}{DB}\ \Longleftrightarrow\ \frac {PA}{PB}\cdot\frac {\sin \widehat {CPA}}{\sin\widehat {CPB}} =$ $ \frac {PA}{PB}\cdot\frac {\sin \widehat {DPA}}{\sin\widehat {DPB}}\ \Longleftrightarrow\ \frac {\sin x}{\sin y} =$ $\frac {\sin (x+y+z )}{\sin z}\Longleftrightarrow$ $\boxed{\sin x\cdot\sin z= \sin y\cdot\sin (x+ y+z )}$ $ \Longleftrightarrow$

$ \cos (x- z ) - \cos (x+ z) = \cos (x+ z ) - \cos (x+ 2y +z)$ $ \Longleftrightarrow$ $ 2\cdot\cos (x+z) = \cos (x-z) + \cos (x+ 2y+z )$ $ \Longleftrightarrow$ $\cos(x+z)=\cos (y+x)\cdot\cos (y+z)\ (*)$ .

Remark. Prove easily that if $ C$ , $ D$ are ".h.c." w.r.t. $ A$ , $ B$ i.e. the relation $ (*)$ is truly, then $ PA\perp PC$ i.e. $x+y=90^{\circ}\ \Longleftrightarrow$ the ray $ [PB$ is the bisector line of $ \widehat {CPD}$ i.e. $y=z$ .


PP2 (easy problem). $ \triangle\ ABC$ and $ \left\|\begin{array}{ccccccc}
E\in AC & , & BE\perp AC & ; & F\in AB & , & CF\perp AB\\\\
M\in (BC) & , & BM=2\cdot MC & ; & C\in (BN) & , & CN=BC\end{array}\right\|$ $ \Longrightarrow$ $ \frac {FM}{FN}=\frac {EM}{EN}$


PP3 (E.C. Ortega). Let $\triangle ABC$ and for $M\in (AC)$ , $P\in (AB)$ denote $L\in BM\cap CP$ , $K\in AL\cap MP$ . Let $N\in (BC)$ so that $\widehat{ANP}\equiv\widehat{LNM}$ . Prove that $KN\perp BC$ .

Proof. Let $S\in AL\cap BC$ , $R\in PM\cap BC$ and $T\in BC$ so that $KT\perp BC$ . Hence: $\left\{\begin{array}{cccc}
(P,M;K,R)\ \mathrm{is\ h.d.}\ : & TK\perp TR & \iff & \widehat{KTP}\equiv\widehat{KTM}\\\\
(A,L;K,S)\ \mathrm{is\ h.d.}\ : &  TK\perp TS & \iff & \widehat{KTA}\equiv\widehat{KTL}\end{array}\right\|\implies$

$\widehat{ATP}\equiv\widehat{KTP}-\widehat{KTA}=\widehat{KTM}-\widehat{KTL}=\widehat{LTM}\implies$ $\widehat{ATP}\equiv\widehat{LTM}$ . In conclusion, $\left\{\begin{array}{ccc}
\widehat{ATP} & \equiv & \widehat{LTM}\\\\
\widehat{ANP} & \equiv & \widehat{LNM}\end{array}\right\|\implies$ $T\equiv N\implies AN\perp BC$ .
This post has been edited 100 times. Last edited by Virgil Nicula, Dec 18, 2016, 8:36 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a