440. Piece of Poetry.

by Virgil Nicula, Feb 25, 2016, 6:58 AM

.


............................... http://i944.photobucket.com/albums/ad288/GemenLeu/9ab9a8bd10e9d2d3be232a59bf0d7f131c26629b_zpsj1csk4bh%202_zpsuwumd4gm.png


O scurtă notă matematică cu aplicaţii bine alese şi îngrijit ordonate (în funcţie de gradul de dificultate) ale unei cunoscute leme "Incenter Excenter Lemma" (<= click).

Evaluare Nationala 2011 ==> "Problema cu albina" - Marcel Chirita ... http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=367104

\[\begin{array}{c}
\underline{\mathrm{PIECE\ OF\ POETRY}}\\\\
\boxed{\ \tan\frac {\pi}{24}=\left(\sqrt 3-\sqrt 2\right)\left(\sqrt 2-1\right)=\sqrt 6-\sqrt 3+\sqrt 2-2\ }\\\\
\tan\frac {\pi}{24}=4\left(\sin\frac {\pi}{3}-\sin\frac {\pi}{4}\right)\left(\sin\frac {\pi}{4}-\sin\frac {\pi}{6}\right)\\\\
\tan\frac {\pi}{24}=16\sin\frac {\pi}{24}\cos\frac {7\pi}{24}\sin\frac {\pi}{24}\cos\frac {5\pi}{24}\\\\
\tan\frac {\pi}{24}=8\sin^2\frac {\pi}{24}\cdot 2\sin\frac {5\pi}{24}\cos\frac {5\pi}{24}\\\\
\tan\frac {\pi}{24}=8\sin^2\frac {\pi}{24}\sin\frac {5\pi}{12}\\\\
8\sin\frac {\pi}{24}\sin\frac {5\pi}{12}\cos\frac {\pi}{24}=1\\\\
4\sin\frac {\pi}{12}\sin\frac {5\pi}{12}=1\\\\
4\sin\frac {\pi}{12}\cos\frac {\pi}{12}=1\\\\
2\sin\frac {\pi}{6}=1\\\\
\mathrm{O.K.}\end{array}\]
Lemma 1. Let $ABC$ be a triangle for which $b\ne c$. Denote: the middlepoint $M$ of the side $[BC]$; the points $D,E,F$ where the incircle $C(I,r)$ touches the side-lines $BC,CA,AB$

respectively; the intersections $K,L$ between the incircle and the median $AM$; the intersection $S\in EF\cap AM$. Then $I\in SD$ and the division $(A,K,S,L)$ is harmonically.

Remark. \sum\cos A=\cos A+(\cos B+\cos C)=\cos A+2\cos\frac {B+C}2\cos\frac {B-C}2=


Proof. Apply an well known relation $\frac{FB}{FA}\cdot MC+\frac{EC}{EA}\cdot MB=\frac{SM}{SA}\cdot BC$ $\Longrightarrow$ $\frac {s-b}{s-a}\cdot \frac a2+\frac {s-c}{s-a}\cdot\frac a2=\frac {SM}{SA}\cdot a\iff$ $\frac{SM}{SA}=\frac{a}{b+c-a}\ \ (1)$. If $T\in BC,\ AT\perp BC$

then $MD=\frac 12\left| b-c\right|\ ,$ $DT=\frac{(p-a)|b-c|}{a},\ \frac{DM}{DT}=\frac{a}{b+c-a}\ \ (2)$. From the relations $(1)$ and $(2)$ results that $\frac{SM}{SA}=\frac{DM}{DT}$, i.e. $SD\parallel AT$ what means $I\in SD$.

Have immediately and the second part of the conclusion (the line $EF$ is the polar of the point $A$ w.r.t. the incircle).


PP1. Let $\triangle ABC$ and the midpoint $M$ of its side $[BC]$ . Let the incircle $\gamma$ of $\triangle ABC$. The median $AM$ of $\triangle ABC$ intersects $\gamma$ at $K$ and $L$. Suppose w.l.o.g. $c<b$ . Hence $K\in (AL)$ .

Let the lines passing through $K$ and $L$, parallel to $BC$, intersect the incircle $\gamma$ again in two points $X$ and $Y$. Let $P\in AX\cap BC$ and $Q\in AY\cap BC$ . Prove that $BP = CQ$.


Proof. Let $S\in EF\cap AM$ . Thus, $KX\parallel LY\iff$ $KXLY$ is an isosceles trapezoid $\iff$ $S\in XY\cap KL\implies$ $\frac {AK}{AL}=\frac {SK}{SL}=\frac {KX}{YL}\implies$ $\boxed{\frac {AK}{AL} =\frac {KX}{YL}}\ (1)$ .

Thus, $\left\{\begin{array}{cccc}
\frac{AM}{AK} & = & \frac{MP}{KX} & (2)\\\\
\frac{AL}{AM} & = & \frac{LY}{MQ} & (3)\end{array}\right\|$ . From the product of $(1)$ , $(2)$ and $(3)$ we obtain $\frac {AK}{AL}\cdot \frac{AM}{AK}\cdot \frac{AL}{AM}=\frac {KX}{YL}\cdot  \frac{MP}{KX} \cdot \frac{LY}{MQ}\implies$ $MP=MQ$, i.e. $BP=CQ\ .$



Lemma 1. Let $w=C(O)$ be a circumcircle of the acute triangle $ABC$, where $AB<AC$. Denote the point $A'\in w\cap (AO$. Define the points $X\in AB$, $Y\in AC$

so that $B\in (AX)\ ,\ AX=AC$ and $Y\in (AC)\ ,\ AY=AB$. Then $m(\widehat {A'BY})=m(\widehat {A'CX})=\frac A2\ .$ Standard notation. $\boxed {\ (XY\ }$ - the ray without the point $X$.

Lemma 2. Let $ABC$ be an acute triangle. Define: the circumcircle $c=C(O)$ and the orthocentre $H$ of the triangle $ABC$; the middlepoint $M$ of the side $[BC]$; the intersection $N$ between

$MH$ and the bisector of the angle $\widehat {BAC}$; $D\in AB$ and $E\in AC$ so that $H\in DE$ and $AD=AE$. Then the point $N$ belongs to the circumcircle $w=C(O_a)$ of the triangle $ADE$.


Proof. $AH=2R\cos A$ and $P\in c\cap (AO_a\Longrightarrow$ $AP=2R\cos \frac{B-C}{2}\ ,$ $MP=R(1-\cos A)$. Thus, $\frac{AN}{AP}=\frac{AH}{AH+MP}=$ $\frac{2\cos A}{1+\cos A}$ $\Longrightarrow $ $\boxed {AN=\frac{2\cos A}{1+\cos A}\cdot AP}\ .$

Denote $N'\in AP\cap w$, i.e. $DN'\perp AB$. Thus, $\frac{AD}{\sin \left(B+\frac A2\right)}{=\frac{AH}{\cos \frac A2}}$ $\Longrightarrow$ $AD=\frac{\cos\frac{B-C}{2}}{\cos \frac A2}\cdot AH$ and $AN'=\frac{AD}{\cos \frac A2}$ $\Longrightarrow$ $AN'=\frac{\cos \frac{B-C}{2}}{\cos^2\frac A2}\cdot AH=$ $\frac{2\cos \frac{B-C}{2}}{1+\cos A}\cdot AH=$

$\frac{AP}{R}\cdot\frac{2R\cos A}{1+\cos A}=$ $\frac{2\cos A}{1+\cos A}\cdot AP$ $\Longrightarrow AN'=AN$ $\Longrightarrow$ $N\equiv N'$, i.e. $N$ belongs to the circumcircle of the triangle $ADE\ .$


PP2. Let an acute $\triangle ABC$ with $AB \not= AC$. Let $H$ be the orthocenter of $\triangle ABC$, and let $M$ be the midpoint of $[BC]$. Let $D\in [AB]$ and $E\in [AC]$

such that $AE=AD$ and $H\in DE$. Prove that $HM$ is perpendicular to the common chord of the circumcircles of $\triangle ABC$ and $\triangle ADE$.


Proof. Let: $A'\in c\cap (AO$ ; the middlepoint $A_1$ of $[AH]$ ; $N\in w\cap (AO_a$. From lemma 2 results $N\in MH$. But $AA_1=HA_1=OM$ ($M$ is the middlepoint of $[HA']$), $OA=OA'$

and $O_aA=O_aN$. Thus, $A_1$, $O$, $O_a$ are the middlepoints of $[AH]$, $[AA']$, $[AN]$ respectively and $N\in HM\equiv HA'$ $\Longrightarrow$ $O_a\in OA_1$ and $OA_1\parallel MH$. Thus, $MH\parallel OO_a$.



PP3. $(\forall )$ $\triangle ABC$ there is the relations $\frac {l_al_bl_c}{h_ah_bh_c}=\frac {8R^2}{s^2+2Rr+r^2}\ge 1$ , where $(\forall )\ x\in\{a,b,c\}\ ,\ l_x$ is the length of $X$-bisector and $h_x$ is the length of $X$- altitude (standard notations).

Proof. Observe that $(a+b)(b+c)(c+a)=\prod(2s-a)=$ $(2s)^3-(2s)^2(a+b+c)+(2s)(ab+bc+ca)-abc=$ $(2s)\left(s^2+r^2+4Rr\right)-4Rrs=$

$2s\left[\left(s^2+r^2+4Rr\right)-2Rr\right]\implies$ $\boxed{(a+b)(b+c)(c+a)=2s\left(s^2+r^2+2Rr\right)}\ (*)$ . I"ll use the well known relation $\boxed{l_a=\frac {2bc\cos\frac A2}{b+c}}$ . Therefore,

$\prod l_a=\prod \frac {2bc\cos\frac A2}{b+c}=$ $\frac {8a^2b^2c^2}{(a+b)(b+c)(c+a)}\cdot\prod\sqrt{\frac {s(s-a)}{bc}}\ \stackrel{(*)}{=}\ \frac {8abc}{2s\left(s^2+r^2+2Rr\right)}\cdot$ $\sqrt{s^3(s-a)(s-b)(s-c)}=$ $\frac {8(4Rrs)}{2s\left(s^2+r^2+2Rr\right)}\cdot s^2r\implies$

$\boxed{l_al_bl_c=\frac {16Rr\cdot s^2r}{s^2+r^2+2Rr}}\ (1)$ . I"ll use the well known identity $\boxed{2Rh_a=bc}$ a.s.o. Thus, $(2R)^3\cdot \prod h_a=\prod (bc)\iff$ $\prod h_a=\frac {(abc)^2}{8R^3}=$ $\frac {(4Rrs)^2}{8R^3}\iff$ $\boxed{\prod h_a=\frac {2s^2r^2}{R}}\ (2)$ .

$\frac {l_al_bl_c}{h_ah_bh_c}\ \stackrel{1\wedge 2}{=}\ \frac {16Rr\cdot s^2r}{s^2+r^2+2Rr}\cdot \frac R{2s^2r^2}\implies$ $\frac {l_al_bl_c}{h_ah_bh_c}=\frac {8R^2}{s^2+2Rr+r^2}$ . I"ll use inequalities $\boxed{R\ge 2r\ \wedge\ s^2\le R^2+4Rr+3r^2}\ (3)$ . Hence $s^2\le 4R^2+4Rr+3r^2=$

$\left(8R^2-2Rr-r^2\right)-\left(4R^2-6Rr-4r^2\right)=$ $\left(8R^2-2Rr-r^2\right)-2(R-2r)(2R+r)\le 8R^2-2Rr-r^2\implies$ $s^2\le 8R^2-2Rr-r^2\implies$ $\frac {8R^2}{s^2+2Rr+r^2}\ge 1\ .$



PP4 (sqing). Let $\{a, b, c\}\subset R^+ $ so that $abc=2$ and $a^2+b^2+c^2=6$ . Show that $a+b+c\ge 4\ .$

Proof 1. Suppose w.l.o.g. $a=\min\{a,b,c\}$ . Hence $0<a\le\sqrt[3]{2}<2$ and $\boxed{a+b+c\ge 4}\iff$ $b+c\ge 4-a\iff$ $(b+c)^2\ge (4-a)^2\iff$ $\left(b^2+c^2\right)+2bc\ge (4-a)^2$

$\iff$ $\left(6-a^2\right)+\frac 4a\ge 16-8a+a^2\iff$ $\frac 4a\ge 10-8a+2a^2\iff$ $a\left(a^2-4a+5\right)-2\le 0\iff$ $a^3-4a^2+5a-2\le 0\iff$ $\boxed{(a-1)^2(a-2)\le 0}$ what is truly.



PP5 (M. Ochoa Sanchez). Let a line $d$ , the points $(A,C,P,D,B)\subset d$ in the mentioned order and a circle $w$ so that $\{C,D\}\subset w$ . Denote

$\{Q,T\}\subset w$ so that $A\in QQ$ and $B\in TT$ . Prove that $\frac 1{PA}-\frac 1{PB}=\frac 1{PC}-\frac 1{PD}\ ($ denote $XX$ - the tangent to $w$ at $X\in w\ )$ .


Proof. I"ll use an well known relation $\boxed{\frac {PT}{PQ}=\frac {TC\cdot TD}{QC\cdot QD}}\ (*)$ . Therefore, $\frac 1{PA}-\frac 1{PB}=\frac 1{PC}-\frac 1{PD}\iff$ $\frac 1{PC}-\frac 1{PA}=\frac 1{PD}-\frac 1{PB}\iff$ $\frac {PA-PC}{PA\cdot PC}=\frac {PB-PD}{PB\cdot PD}\iff$

$\frac {AC}{PA\cdot PC}=\frac {BD}{PB\cdot PD}$ $\iff$ $\frac {AC}{AP}=\frac {BD}{BP}\cdot\frac {PC}{PD}\iff$ $\frac {QC}{QP}\cdot \frac {QC}{QT}=\left(\frac {TD}{TP}\cdot\frac {TD}{QT}\right)\cdot\left(\frac {CQ\cdot CT}{DQ\cdot DT}\right)\iff$ $\frac {QC}{QP}=\frac {TD}{TP}\cdot\frac {TC}{QD}$ , i.e. the relation $(*)$ what is truly.



PP6. Let $ABCD$ be an isosceles trapezoid with $AB\parallel CD$ , $AB<CD$ and the circumcircle $w=\mathbb C(O,R)$ . Denote the midpoint $M$

of $[CD]$ and the point $P\in CD$ so that $PA$ is tangent to $w$ . Prove that $\boxed{PC^2+PD^2+2\cdot AB\cdot PM=PA^2+PB^2+CD^2}\ (*)$ .


Proof. $\left\{\begin{array}{cc}
\left|\begin{array}{ccc}
PC\cdot PD & = & PA^2\\\\
PD-PC & = & CD\end{array}\right|\implies PC^2+PD^2=(PD-PC)^2+2\cdot PC\cdot PD=CD^2+2\cdot PA^2  \implies \boxed{PC^2+PD^2=CD^2+2\cdot PA^2} & (1)\\\\
\mathrm{Euler's\ relation\ to\ ABMP}\implies PA^2+BM^2+2\cdot AB\cdot PM=PB^2+AM^2\ \mathrm{and}\ MA=MB \implies \boxed{PA^2+2\cdot AB\cdot PM=PB^2} & (2)\end{array}\right|$ $\bigoplus\implies (*)$

Particular case. If $O\in CD$ , then prove easily that $CD^2=2\cdot AB\cdot PM$ , i.e. $PA^2+PB^2=PC^2+PD^2$ .



PP7 (Miguel O. Sanchez). Let $w$ be the circumcircle of $\triangle ABC$ and $\{D,E\}\subset (BC)$ so that $\widehat{DAB}\equiv\widehat{EAC}$ .

Prove that $\boxed{AD\cdot AE= AB\cdot AC-\sqrt{p_w(D)\cdot p_w(E)}}\ (*)$ , where $p_w(X)$ is power of $X$ w.r.t. $w\ .$


Proof 1. Let $\left\{\begin{array}{ccc}
AD\cap w=\{A,X\} & ; & BY=CX=m\\\\
AE\cap w=\{A,Y\} & ; & BX=CY=n\end{array}\right\|$ and Ptolemy's theorem to $\left\{\begin{array}{cccc}
ABXC\ : & BC\cdot AX=AB\cdot XC+AC\cdot XB & \implies & a\cdot AX=cm+bn\\\\
ABYC\ : & BC\cdot AY=AB\cdot YC+AC\cdot YB & \implies & a\cdot AY=cn+bm\end{array}\right\|$ .

$\blacktriangleright\ \odot\begin{array}{ccc}
\nearrow AXB\sim ACE & \implies & \frac {AX}b=\frac n{CE}=\frac c{AE}\searrow\\\\
\searrow AXC\sim ABE & \implies & \frac {AX}c=\frac m{BE}=\frac b{AE}\nearrow\end{array}$ $\odot\implies  AX\cdot AE=bc\ \odot\begin{array}{c}
\nearrow AX\cdot CE=bn\searrow\\\\
\searrow AX\cdot BE=cm\nearrow\end{array}\odot\ AX\cdot (BE+CE)=bn+cm\implies a\cdot AX=bn+cm$

$\blacktriangleright\ \odot\begin{array}{ccc}
\nearrow AYC\sim ABD & \implies & \frac {AY}c=\frac n{BD}=\frac b{AD}\searrow\\\\
\searrow AYB\sim ACD & \implies & \frac {AY}b=\frac m{CD}=\frac c{AD}\nearrow\end{array}$ $\odot\implies  AY\cdot AD=bc\ \odot\begin{array}{c}
\nearrow AY\cdot BD=cn\searrow\\\\
\searrow AY\cdot CD=bm\nearrow\end{array}\odot\ AY\cdot (BD+CD)=bm+cn\implies a\cdot AY=bm+cn$

Observe that $BC\parallel XY\iff \frac {AD}{DX}=\frac {AE}{EY}$ , i.e. $\boxed{AD\cdot EY=DX\cdot AE}\ (1)$ . Thus, $(DB\cdot DC)(EB\cdot EC)=$ $p_w(D)p_w(E)=$ $(AD\cdot DX)(AE\cdot EY)=$

$(AD\cdot EY)(DX\cdot AE)\ \stackrel{(1)}{=}\ (AD\cdot EY)^2$ $\implies$ $\boxed{AD\cdot EY=\sqrt {p_w(D)p_w(E)}}\ (2)$ . In conclusion, $bc=AD\cdot AY=AD\cdot (AE+EY)=$ $AD\cdot AE+AD\cdot EY\ \stackrel{(2)}{=}$

$AD\cdot AE+$ $\sqrt {p_w(D)p_w(E)}\implies$ $AD\cdot AE=bc-\sqrt {p_w(D)p_w(E)}$ (It is a nice Stan Fulger's proof).

Proof 2. Let $\left\{\begin{array}{ccc}
BY=CX=m\\\\
BX=CY=n\end{array}\right\|$ . Apply the Ptolemy's theorem to $:\ \left\{\begin{array}{cc}
ABXC\ : & a\cdot AX=bn+cm\\\\
ABYC\ : & a\cdot AY=bm+cn\end{array}\right\|$ $\implies$ $\boxed{AX\cdot AY=\frac {(bn+cm)(bm+cn)}{a^2}}\ (1)$ . Are well known

relations $\left\{\begin{array}{ccc}
ABXC\ :\ \frac {DA}{bc}=\frac {DX}{mn}=\frac {AX}{bc+mn}=\frac {DB}{cn}=\frac {DC}{bm}=\frac a{bm+cn}=\sqrt{\frac {-p_w(D)}{bcmn}}\\\\
ABYC\ :\ \frac {EA}{bc}=\frac {EY}{mn}=\frac {AY}{bc+mn}=\frac {EB}{cm}=\frac {EC}{bn}=\frac a{bn+cm}=\sqrt{\frac {-p_w(E)}{bcmn}}\end{array}\right\|$ $\implies$ $AX\cdot AY=bc+mn\ \stackrel{(1)}{\implies}\ \boxed{(bm+cn)(bn+cm)=a^2(mn+bc)}\ (2)$ .

Otherwise. Apply the Pythagoras' theorem $:\ \left\{\begin{array}{c}
\triangle BAC\ : a^2=b^2+c^2-2bc\cdot\cos A\\\\
\triangle BXC\ : a^2=m^2+n^2+2mn\cdot\cos A\end{array}\right\|$ $\implies$ $mn\left(b^2+c^2-a^2\right)+bc\left(m^2+n^2-a^2\right)=0\implies$ the relation $(2)$ .

Thus, $AD\cdot AE=\frac {abc}{bm+cn}\cdot\frac {abc}{bn+cm}\ \stackrel{(2)}{\implies}\ \boxed{AD\cdot AE= \frac {b^2c^2}{bc+mn}}\ (3)\ ;\ \frac {\sqrt{p_w(D)p_w(E)}}{bcmn}=$ $\frac {a^2}{(bm+cn)(bn+cm)}\ \stackrel{(2)}{\implies}\ \boxed{\sqrt{p_w(D)p_w(E)}=\frac {bcmn}{bc+mn}}\ (4)$ .

In conclusion, $bc-AD\cdot AE\ \stackrel{(3)}{=}\ bc-\frac {b^2c^2}{bc+mn}=bc\cdot\left(1-\frac {bc}{bc+mn}\right)=\frac {bcmn}{bc+mn}\ \stackrel{(4)}{=}\ \sqrt{p_w(D)p_w(E)}\implies$ $bc-AD\cdot AE=\sqrt{p_w(D)p_w(E)}$ .

Particular case. If $D\equiv E$ , then $AD$ is $A$-bisector of $\triangle ABC$ and the relation $(*)$ becomes well-known relation $AD^2=bc-DB\cdot DC$ , what get length of $A$-bisector in $
\triangle ABC$ .

If $E$ is the midpoint of $[BC]$ , then $\frac {DB}{c^2}=\frac {DC}{b^2}=\frac a{b^2+c^2}$ and $s_am_a=bc-\frac {a^2bc}{2\left(b^2+c^2\right)}=bc\cdot\left[1-\frac {a^2}{2\left(b^2+c^2\right)}\right]=\frac {bc}{2\left(b^2+c^2\right)}\cdot 4m_a^2\implies$ $\boxed{s_a=\frac {2bc}{b^2+c^2}\cdot m_a}$ (well-known).



PP8 (Miguel O. Sanchez). Let an $A$-right $\triangle ABC$ and $D\in (BC)$ , $E\in (CA)$ and $F\in (AB)$ so that $P\in AD\cap BE\cap CF$ and $\widehat{AEB}\equiv\widehat{CED}$ . Prove that $FB=2\cdot FA$ .

Proof. Let $K\in DE\cap AB$ . Observe that $\widehat{AEB}\equiv\widehat{CED}\equiv\widehat{AEK}$ and $EA\perp BK\iff$ $\triangle BEK$ is $E$-isosceles $\iff$ $\boxed{AB=AK}\ (*)$ .

Is well known that the points $\{K,F\}$ are conjugate w.r.t. the points $\{A,B\}$ , i.e. $\frac {FB}{FA}=\frac {KB}{KA}=2\ \stackrel{(*)}{\implies}\ \frac {FB}{FA}=2\iff FB=2\cdot FA$ .

Remark. $\left\{\begin{array}{cccccc}
\mathrm{Menelaus'\ theorem\ to} & \overline {DEK}/\triangle ABC & : & \frac {KA}{KB}\cdot\frac{DB}{DC}\cdot\frac {EC}{EA} & = & 1\\\\
\mathrm{The\ Ceva's\ theorem\ to} & \mathrm{the\ point}\ P & : & \frac {EA}{EC}\cdot\frac {DC}{DB}\cdot\frac {FB}{FA} & = & 1\end{array}\right\|\bigodot\implies \frac {FA}{FB}=\frac {KA}{KB}\ ,$ i.e. $\{K,F\}$ are conjugate w.r.t. $\{A,B\}$



PP9. Let $P$ be an interior interior point of $\triangle ABC$ with the circumcircle $w$ and $a\ne b$ . The lines $AP$ , $BP$ , $CP$ meet again $w$ at $K$ , $L$ ,

$M$ respectively. Denote $S\in CC\cap AB$ , where $XX$ is the tangent line to $w$ at $X\in w$ .Prove that $SC = SP\iff MK = ML$ .


Proof 1. Consider the circle which is tangent to $w$ in $C$ and to $SP$ in $P$ . Denote $\{X,Y\}=SP\cap w$ , where $X\in \overarc{AL}$ . From the well-known property

obtain that $\widehat {MCX}\equiv\widehat {MCY}$ , i.e. $\overarc{MX}=\overarc{MY}$ . Since $SP^2=SC^2=SA\cdot SB$ obtain that $SP^2=SA\cdot SB$ $\iff$ $\widehat {SPA}\equiv\widehat{SBP}\implies$ the line $SP$

is tangent to the circumcircle of $\triangle APB$) , i.e. $\overarc{XL}=\overarc{YK}$ . In conclusion, $\overarc{ML}=\overarc{MX}+\overarc{XL}=\overarc{MY}+\overarc{YK}=\overarc{MK}$ $\implies$ $\overarc{ML}=\overarc{MK}$ , i.e. $ML=MK$ .

Proof 2. Using the power point theorem we get that $SP^2=SA\cdot SB$ which means that the triangles $SPB$ , $PAS$ are similarly. A bit angle chasing shows that $\widehat{SPL}\equiv$

$\widehat{BAP}\equiv\widehat{BLK}$ so $SP\parallel LK\ (1)\ .$ But $OC\bot CS$ and $\widehat{SPC}\equiv\widehat{SCP}$, so $OM\bot SP\ (2)\ .$ From the relations $(1)$ and $(2)$ we have that $OM\bot LK$ and we are done.



PP10 (Chinese MO 1996). Let $\triangle{ABC}$ be a triangle with orthocenter $H$ . The tangent lines from $A$ to the circle $w$ with diameter $[BC]$ touch it on $P$ and $Q$. Prove that $H\in PQ$ .

Proof 1 (pole/polar). Denote the circumcircle $(O)$ of $\triangle ABC$ , $\{A,D_1\}=AH\cap (O)$ , $D\in BC$ for which $AD\perp BC$ and $\{U,V\}=AH\cap w$ . Observe that

$DU^2=DB\cdot DC=DA\cdot DD_1=DA\cdot DH$ , i.e. $\boxed {\ DU^2=DA\cdot DH\ }$ what is a characterization of $(A,H,U,V)$ - harmonical division, i.e. $H$ is harmonical

conjugate of $A$ w.r.t. $\{U,V\}$ . In conclusion, $H$ belongs to polar of $A$ w.r.t. $(O)$ , i.e. $H\in PQ$ .

Proof 2 (metric). Suppose that $AB$ separates $P$ , $C$ . Denote $E\in AC$ so that $BE\perp AC$ and $F\in AB$ so that $CF\perp AB$ . Observe that $\frac {PF}{PB}=\sqrt {\frac {AF}{AB}}$ and $\frac {QE}{QC}=\sqrt {\frac {AE}{AC}}$ .

Thus $\frac {PF}{PB}\cdot\frac {QE}{QC}=|\cos A|=\frac {EF}{BC}$ , i.e. $\frac {PF}{PB}\cdot\frac {QE}{QC}=\frac {EF}{BC}$ $\Longleftrightarrow$ $BP\cdot FE\cdot QC=PF\cdot EQ\cdot CB$ $\stackrel{(*)}{\Longleftrightarrow}$ $BE$ , $PQ$ , $FC$ are concurrently $\Longleftrightarrow$ $H\in PQ$ .


Lemma. Let $ABCDEF$ be a cyclic hexagon. Prove that $\boxed {\ AD\cap BE\cap CF\ne\emptyset \Longleftrightarrow AB\cdot CD\cdot EF=BC\cdot DE\cdot FA\ }\ (*)$ .

An easy extension. Let $\alpha=\mathbb C(O)$ be circumcircle of $\triangle ABC$ and $w=\mathbb C(K)$ be a circle so that $\{B,C\}\subset w$ and exists $D\in (BC)$ such that $DA\perp DK\ .$

Let $\{A,D_1\}=\{A,D\}\cap \alpha$ and the symmetric $L$ of $D_1$ w.r.t. $D\ .$ The tangent lines from $A$ to the circle $w$ touch it on $P$ and $Q\ .$ Prove that $L\in PQ\ .$


Proof. Denote $\{U,V\}=AD\cap w$ . Prove easily that $D$ is the common midpoint of $[UV]$ and $[D_1L]\ .$ Since $D\in BC$ what is the radical axis of $w$ and

$\alpha$ obtain that $DU^2=DB\cdot DC=DD_1\cdot DA=DL\cdot DA\implies$ $DU^2=DL\cdot DA$ . The last relation is a
characterization A2 of "$(A,L;U,V)$ is

an harmonic division". In conclusion, the point $L$ is the harmonical conjugate of $A$ w.r.t. $\{U,V\}\subset w$ . Hence $L\in PQ$ what is the polar of $A$ w.r.t. $\alpha$ .



PP11 (P. Paulino). Let a square $ABCD$ , $\{M,N\}\subset (BC)$ so that $M\in (BM)$ , $P\in AM\cap DN$ and $x=m\left(\widehat{APD}\right)$ . Prove that $(A,M,N,C)$ is harmonically $\iff x=45^{\circ}$ .

Proof 1. Suppose w.l.o.g. $AB=1$ and let $\left\{\begin{array}{ccc}
MB=m\ ;\ m\left(\widehat{MAB}\right)=y & \implies & \tan y=m\\\\
NC=n\ ;\ m\left(\widehat{NDC}\right)=z & \implies & \tan z=n\end{array}\right\|$ $\implies$ $\tan x=\tan (y+z)=\frac{\tan y+\tan z}{1-\tan y\tan z} \implies $ $\boxed{\tan x=\frac {m+n}{1-mn}}\ (*)$ .

Thus, $(A,M,N,C) $ is harmonically $\iff$ $\frac {MB}{MN}=\frac {CB}{CN}\iff$ $\frac m{1-m-n}=\frac 1n\iff$ $1-m-n=mn\iff$ $m+n=1-mn\ \stackrel{*}{\iff}\ \tan x=1\iff x=45^{\circ}$ .

Proof 2. Let the circumcircle $w$ of $ABCD$ , $\{A,R\}=\{A,M\}\cap w$ and $S\in DR\cap BC$ . Observe that $RM\perp RC$ and the ray $[RM$ is the bisector of $\widehat{BRS}$ , what means

that the point $S$ is harmonical conjugate of $B$ w.r.t. $\{M,C\}$ , i.e. $(B,M,S,C)$ is harmonically $\iff S\equiv N$ $\iff$ $R\equiv P$ . In conclusion, $P\in w$ and $m\left(\widehat{APD}\right)=45^{\circ}$ .

Proof 3. Denote $\left\{\begin{array}{ccc}
X\in (PB) & ; & XM\perp BC\\\\
Y\in (PC) & ; & YN\perp BC\end{array}\right\|$ . Thus, $\boxed{\frac {XM}{BA}}=\frac {PM}{PA}=\boxed{\frac {MN}{AD}}=\frac {PN}{PD}=\boxed{\frac {YN}{CD}}\implies$ $\frac {XM}{BA}=\frac {MN}{AD}=\frac {YN}{CD}\ \stackrel{BA=AD=CD}{\implies}$

$XM=MN=YN\implies$ $XMNY$ is a square. Since $(B,M,N,C)$ in this order is an harmonical division then $\frac {BM}{BC}=\frac {NM}{NC}\iff$ $\frac {BM}{BA}=\frac {NY}{NC}\iff$

$\triangle BMA\sim\triangle NYC\iff$ $\widehat{BAM}\equiv\widehat{NCY}\iff$ $\widehat{BAP}\equiv\widehat{BCP}\iff$ $ABPC$ is cyclically $\iff$ $PA\perp PC\iff m\left(\overarc{AD}\right)=90^{\circ}\iff$ $m\left(\widehat{APD}\right)=45^{\circ}\ .$



PP12 (Edson Curahua Ortega). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ for what denote the intersections $D\in (BC)\cap AI$, $E\in (CA)\cap BI$,

$F\in (AB)\cap CI$. Denote $M\in EF\cap AD$ and $N\in (AC)\ ,P\in (AB)$ so that $NP\parallel BC$ and $M\in NP$ . Prove that $BP+CN=2\cdot NP$ .


Proof 1. $\frac {AP}{AB}=\frac {AN}{AC}=\frac {PN}{BC}=\frac {AM}{AD}\iff$ $\frac {BP}{AB}=\frac {CN}{AC}=\frac {BC-PN}{BC}=\frac {MD}{AD}=k\iff$ $\frac {BP}c=\frac {CN}b=$ $1-\frac {PN}a=\frac {MD}{AD}=k\implies$

$\left\{\begin{array}{ccc}
BP+CN & = & k(b+c)\\\\
PN & = & a(1-k)\end{array}\right\|\implies$ $\boxed{\frac {BP+CN}{PN}=\frac k{1-k}\cdot \frac {b+c}a}\ (*)$ . Apply an well known relation (the Cristea's identity) $:$

$\frac {MD}{MA}=\frac {DC}{BC}\cdot\frac {FB}{FA}+\frac{DB}{BC}\cdot\frac {EC}{EA}\iff$ $\frac k{1-k}=\frac b{b+c}\cdot \frac ab+\frac c{b+c}\cdot\frac ac\iff$ $\frac k{1-k}=\frac {2a}{b+c}\ \stackrel{*}{\implies}\ \boxed{\frac {BP+CN}{PN}=2}\ .$

Proof 2. I"ll use upper notations. Is well known that the division $(\ A\ ,\ I\ ;\ M\ ,\ D\ )$ is harmonically and apply its $\mathrm{A}8^{th}$-
characterization (<= click) $:\ \frac {IA}{ID}=2\cdot\frac {MA}{MD}$, i.e. $\frac {MA}{MD}=\frac {b+c}{2a}\ .$

Therefore, $\frac {BP}c=\frac {CN}b=$ $\frac {DM}{DA}=1-\frac {AM}{AD}=\frac {2a}{b+c+2a}=$ $\boxed{\frac {BP+CN}{b+c}}=1-\frac {NP}{a}=$ $\frac {2a-2\cdot NP}{2a}=\frac {2a-(2a-2\cdot NP)}{(b+c+2a)-2a}=$ $\boxed{\frac {2\cdot NP}{b+c}}\implies$ $BP+CN=2\cdot NP\ .$



PP13. Folosind in exclusivitate formulele de calcul prescurtat in doua variabile (predate in lectiile anterioare) $\left\{\begin{array}{cccc}
(a+b)^2 & = & a^2+b^2+2ab & (1)\\\\
a^3+b^3 & = & (a+b)^3-3ab(a+b) & (2)\\\\
(a+b)(a+c) & = & a^2+a(b+c)+bc & (3)\end{array}\right\|$

sa se demonstreze urmatoarele identitati algebrice in trei variabile $:\ \left\{\begin{array}{cccc}
a^3+b^3+c^3 & = & 3abc+(a+b+c)\left[\left(a^2+b^2+c^2\right)-(ab+bc+ca)\right] & (\alpha )\\\\
a^3+b^3+c^3 & = & (a+b+c)^3-3(a+b)(b+c)(c+a) & \beta )\\\\
a^3+b^3+c^3 & = & (a+b+c)^3-3(a+b+c)(ab+bc+ca)+3abc & (\gamma )\end{array}\right\|\ .$

Proof.$$\begin{array}{cc}
\boxed{\alpha} & \boxed{\beta}\\\\
a^3+\underline{b^3+c}^3-3abc & a^3+\underline{b^3+c}^3\\\\
a^3+\underline{(b+c)^3-3bc(b+c)}-3abc & a^3+\underline{(b+c)^3-3bc(b+c)}\\\\
\underline{(a+b+c)^3-3a(b+c)(a+b+c)}-3bc(a+b+c) & \underline{(a+b+c)^3-3a(b+c)(a+b+c)}-3bc(b+c)\\\\
(a+b+c)\left[\underline{a^2+(b+c)^2+2a(b+c)}-3a(b+c)-3bc\right] & (a+b+c)^3-3(b+c)\left[\underline{a(a+b+c)+bc}\right]\\\\
\boxed{a^3+b^3+c^3-3abc=(a+b+c)\left[\left(a^2+b^2+c^2\right)-(ab+bc+ca)\right]} & \boxed{a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)}\end{array}$$$$\boxed{(a+b)(b+c)(c+a)+abc=(a+b+c)(ab+bc+ca)}$$$$\boxed{\begin{array}{ccccc}
\sum a^2(b+c) & = & \sum a\left(b^2+c^2\right) & = & \sum bc(b+c)\\\\
\sum a^3(b+c) & = &  \sum a\left(b^3+c^3\right) & = &  \sum bc\left(b^2+c^2\right)\\\\
\sum a^4(b+c) & = &  \sum a\left(b^4+c^4\right) & = &  \sum bc(b^3+c^3)\end{array}}$$
PP14 (IMO shortlist 2003). Let $\triangle ABC$ with the circumcircle $w$ and a point $D\in\overarc{AC}\subset w$ so that $AC$ separates $D$ , $B$ . Denote the projection $P,Q,R$ of $D$ on $BC$ , $CA$ ,

$AB$ respectively. Prove that $QP=QR\iff$ the intersection between the $B$-bisector of $\triangle ABC$ with the $D$-bisector of $\triangle ADC$ belongs to $AC$ , i.e. $ABCD$ is harmonic.


Proof. Is well-known that ${PQR}$ is the Simson's line of $D$ w.r.t. $w$ . Let $\{X,Y\}\subset (AC)$ so that $\left\{\begin{array}{ccc}
\widehat{XBA}\equiv\widehat{XBC} & \iff & \frac {XA}{XC}=\frac {BA}{BC}\\\\
\widehat {YDA}\equiv\widehat {YDC} & \iff & \frac {YA}{YC}=\frac {DA}{DC}\end{array}\right\|\ (*)$ . Therefore, $CDQP$

and $AQDR$ are cyclically and their circumcircles have the diameters $[DC]$ and $[DA]$ respectively. Hence $\left\{\begin{array}{ccc}
QR=AD\sin\widehat {QAR} & \implies & QR=AD\sin A\\\\
QP=CD\sin\widehat{PCQ} & \implies & QP=CD\sin C\end{array}\right\|\ .$

In conclusion, $QP=QR\iff$ $AD\sin A=CD\sin C\iff$ $DA\cdot BC=DC\cdot BA\ \stackrel{(*)}{\iff}\ \frac {YA}{YC}=\frac {DA}{DC}=\frac {BA}{BC}=\frac {XA}{XC}\iff$ $\frac {YA}{YC}=\frac {XA}{XC}\iff$ $X\equiv Y$ .



PP15. $\{a,b,c\}\subset\mathbb R^*_+$ and $a^2+b^2+c^2+2abc=1\implies a+b+c\le \frac 32\ .$

Proof 1. Denote $k=a+b+c$ and observe that $k^2-2k+1=2(1-a)(1-b)(1-c)\le 2\left(\frac{3-k}{3}\right)^3\implies$ $27(k-1)^2\le 2(3-k)^3\implies$

$27\left(k^2-2k+1\right)\le 2\left(27-27k+9k^2-k^3\right)\implies$ $2k^3+9k^2-27\le 0\implies (2k-3)(k+3)^2\le 0\implies k\le\frac 32\implies a+b+c\le \frac 32\ .$

Proof 2. Is well known the identity $\cos ^2A+\cos^2 B+\cos^2C+2\cos A\cos B\cos C=1$ in any $\triangle ABC$ . Since $\{a,b,c\}\subset (-1,1)$

exists the triangle $ABC$ so that $a=\cos A$ , $b=\cos B$ , $c=\cos C$ . Prove easily that $\cos A+\cos B+\cos C\le\frac 32$ , i.e. $a+b+c\le \frac 32\ .$

Remark. $\left\{\begin{array}{ccc}
\cos A=1-2\sin^2\frac A2\\\\
\cos\frac {B+C}2=\sin\frac A2\end{array}\right\|$ $\implies$ $\sum\cos A=\cos A+(\cos B+\cos C)=$ $1-2\sin^2\frac A2+2\cos\frac {B+C}2\cos\frac {B-C}2=$ $1+2\sin\frac A2\left(\cos\frac {B-C}2-\cos\frac {B+C}2\right)=$

$1+4\sin\frac A2\sin\frac B2\sin\frac C2=$ $1+4\sqrt{\frac {(s-b)(s-c)}{bc}\cdot\frac {(s-a)(s-c)}{ac}\cdot\frac {(s-a)(s-b)}{ab}}=$ $1+\frac {4(s-a)(s-b)(s-c)}{abc}=$ $1+\frac {4sr^2}{4Rrs}=1+\frac rR\ .$

In conclusion, $\boxed{\sum\cos A=1+\frac rR\le\frac 32}$ and $\boxed{\prod\sin\frac A2=\frac r{4R}\le\frac 18}$ because $\boxed{R\ge 2r}\ .$ Indeed, $a^2\ge a^2-(b-c)^2\implies$ $a^2\ge 4(s-b)(s-c)$ a.s.o.

In conclusion, $\left\{\begin{array}{ccc}
a^2 & \ge & 4(s-b)(s-c)\\\\
b^2 & \ge & 4(s-c)(s-a)\\\\
c^2 & \ge & 4(s-a)(s-b)\end{array}\right\|\ \bigodot\ \implies$ $abc\ge 8(s-a)(s-b)(s-c)\implies$ $4Rrs\ge 8sr^2\implies R\ge 2r\ .$



PP16. Solve the following system over $\mathbb R^*_+\ :\  \left\{\begin{array}{ccc} 
x+y^2+z^3 & = & 3\\\\
x^2+y^3+z & = & 3\\\\
x^3+y+z^2 & = & 3\end{array}\right\|\ .$

Proof. Apply $\mathrm{C.B.S.}$ over $\mathbb R^*_+\ :\ \boxed{\left(\sqrt{ax}+\sqrt{by}+\sqrt{cz}\right)^2\le (a+b+c)(x+y+z)}\ (*)\ .$ Thus, $(x^2+\sqrt{y^3}+\sqrt{z^5})^2\le (x^3+y+z^2)*(x+y^2+z^3)=9\implies$

$x^2+\sqrt{y^3}^2 + \sqrt{z^5}\le 3=x^2+y^3+z\implies$ $\sqrt{y^3}+\sqrt{z^5}\le y^3+z\ .$ Prove easily that $y\le 1\implies z\le 1\implies x\le 1$ and $y\ge 1\implies z\ge 1\implies x\ge 1$ ,

i.e. $\{x,y,z\}\subset (0,1]$ or $\{x,y,z\}\subset [1,\infty )$ . In conclusion, $x+y^2+z^3=3\implies x=y=z=1\ .$



PP17 (Miguel O. Sanchez). Let $\triangle ABC$ with $A\ge 120^{\circ}\ .$ Prove that $\sqrt 3(b+c)\left(b^2+bc+c^2\right)\le 2a^2$ (standard notations).

Proof. Suppose w.l.o.g. $\boxed{a=1}\ (*)$ and $B\le 30^{\circ}\le C<60^{\circ}\ .$ Therefore, $A\ge 120^{\circ}\iff$ $\cos A\le -\frac 12\iff$ $2\cos A+1\le 0\iff$ $bc(2\cos A+1)\le 0\iff$

$b^2+c^2-a^2+bc\le 0\ \stackrel{(*)}{\iff}\ \boxed{b^2+bc+c^2\le 1}\ (1)\ \implies$ $\left\{\begin{array}{cccccccc}
3bc & \le & b^2+bc+c^2 & \stackrel{(1)}{\le} & 1 & \implies & \boxed{bc\le \frac 13} & (2)\\\\
(b+c)^2 & \stackrel{(1)}{\le} & bc+1 & \stackrel{(2)}{\le} & \frac 43 & \implies & \boxed{b+c\le \frac 2{\sqrt 3}} & (3)\end{array}\right\|\ \stackrel{(1\wedge 3)}{\implies}\ (b+c)$ $\left(b^2+bc+c^2\right)\le \frac 2{\sqrt 3}\ .$



Lemma. $(\forall )\ \triangle ABC$ and $\phi\in\mathbb R$ , there is the identity $\sum^{cyc}\sin A\sin (B+\phi )\sin (C-\phi )=(1+2\cos 2\phi )\prod\sin A\ .$

Proof. Apply $\boxed{S=2R^2\sin A\sin B\sin C}\ (*)$ for the area of $\triangle ABC$ and the identity $\boxed{\alpha +\beta +\gamma =\pi\implies  4\sin\alpha\sin\beta\sin\gamma=\sin 2\alpha +\sin 2\beta +\sin 2\gamma}\ (1)\ .$

Therefore, $A+(B+2\phi )+(C-2\phi )=\pi\ \stackrel{(1)}{=}\ 4\sin A\sin (B+\phi )\sin (C-\phi )=\sin 2A+\sin (2B+2\phi )+\sin (2C-2\phi )\implies$

$\underline{\underline{4\sum^{cyc}\sin A\sin (B+\phi )\sin (C-\phi )}}=\sum\sin 2A+\sum^{cyc}[\sin (2B+2\phi )+\sin (2C-2\phi )]=\sum\sin 2A+\sum [\sin (2A+2\phi )+\sin (2A-2\phi )]=$

$\sum\sin 2A+2\cos 2\phi\sum\sin 2A=$ $(1+2\cos 2\phi )\sum\sin 2A=\underline{\underline{4(1+2\cos 2\phi )\prod\sin A}}\implies$ $\boxed{\sum^{cyc}\sin A\sin (B+\phi )\sin (C-\phi )=(1+2\cos 2\phi )\prod\sin A}\ (1)\ .$


PP18 (Miguel O. Sanchez). Let $\triangle ABC$ and the midpoints $(M,N,P)$ of its sides $[BC]$ , $[CA]$ , $[AB]$ . Prove that for any $\triangle DEF$ so that

$M\in (DE)$ , $N\in (EF)$ , $P\in (DF)$ and $\widehat {APF}\equiv\widehat{BMD}\equiv\widehat{CNE}$ , there is the inequality $[DEF]\le S$ , where $S$ is the area of $\triangle ABC$ .


Proof. $AFPN$ , $BDMP$ , $CENM$ are cyclically with same radius $\frac R2\ .$ Thus, $\sum [PFN]=[PFN]+[MDP]+[NEM]\ \stackrel{(*)}{=}\ \sum\frac {R^2}2\sin A\sin (B+\phi )\sin (C-\phi )\ \stackrel {(1)}{=}$

$\frac {R^2}2\cdot (1+2\cos 2\phi )\prod\sin A=$ $\frac {1+2\cos 2\phi}4\cdot 2R^2\prod\sin A\ \stackrel{(*)}{=}\ \frac {(1+2\cos 2\phi )S}4\le \frac {3S}4\implies$ $\sum [PFN]\le\frac {3S}4\implies$ $[DEF]=[MNP]+\sum [PFN]\le S\ .$



P19. Find the maximum value of the sum $x^2+y^2$ , where $(x,y)\in \mathbb Z^2$ and $2xy+2x-5y=40\ .$

Proof. I"ll find all ordered pairs $(x,y)\in \mathbb Z^2$ , where $2xy+2x-5y=40$ . Thus, $y\ne -1$ and $2xy+2x-5y=40\iff$ $2x(y+1)=5(y+8)\iff$ $2x=\frac {5(y+8)}{y+1}\ (*)\ .$

Thus, $x\in \mathbb Z\iff$ $2x=5+\frac {35}{y+1}\in\mathbb Z\iff$ $(y+1)|35\iff$ $(y+1)\in(\pm 1,\pm 5,\pm 7\pm 35)$ , i.e. $y\in (\underline{0,-2,4,-6,6,-8,34,-36})$ . Let $k(y+1)=35$ , i.e. $x=\frac {k+5}2$ .

Hence $k\in (35,-35,7,-7,5,-5,1,-1)$ and $x\in (\underline{20,-15,6,-1,5,0,3,2})$ , i.e. $\boxed{(x,y)\in \{(20,0);(-15,-2);(6,4);(-1,-6);(5,6) ; (0,-8); (3,34);(2,-36)\}\subset\mathbb Z^2}$

In conclusion, $\odot\begin{array}{ccccccccccc}
\nearrow & x\ : & 20 & -15 & 6 & -1 & 5 & 0 & 3 & 2 & \searrow\\\\
\searrow & y\ : & 0 & -2 & 4 & -6 & 6 & -8 & 34 & -36 & \nearrow\end{array}\odot$ Prove easily that the maximum value of the sum $x^2+y^2$ is $36^2+2^2$ , i.e. $1300.$



P20. Sa se arate ca intr-un triunghi ascutitunghic are loc inegalitatea: $\frac{1}{b^{2}+c^{2}-a^{2}}\ +\frac{1}{c^{2}+a^{2}-b^{2}}\ +\frac{1}{a^{2}+b^{2}-c^{2}}\geq\frac{1}{4r^{2}}\ .$

Metoda 1. Reamintim relatia remarcabila in $\triangle ABC\ :\ \sum a\cdot\cos A=\frac {2pr}{R}\ .$ Deci $\sum\frac {1}{b^2+c^2-a^2}=$ $\frac {1}{2abc}\cdot\sum \frac {a^2}{a\cdot\cos A}\ \stackrel{(C.B.S.)}{\ \ge\ }\ \frac {1}{2abc}\cdot\frac {\left(\sum a\right)^2}{\sum a\cos A}=\frac {1}{8Rpr}\cdot \frac {4p^2}{\frac {2pr}{R}}=\frac {1}{4r^2}\ .$

Metoda 2. Folosind $\boxed{4\cdot S=\left(b^2+c^2-a^2\right)\cdot\tan A}$ inegalitatea devine $\boxed{\tan A+\tan B+\tan C\ge\frac pr}\ .$ Cateva relatii remarcabile in $\triangle ABC\ :\ \sum\sin A=$ $\frac pR\ ;\ \sum\sin 2A=$

$4\prod\sin A=\frac {2pr}{R^2}\ .$ Asadar, $\sum\tan A=2\cdot\sum \frac {\sin^2A}{\sin 2A}\ \stackrel{(C.B.S.)}{\ge}\ 2\cdot\frac {\left(\sum\sin A\right)^2}{\sum\sin 2A}=\frac {2\left(\frac pR\right)^2}{\frac {2pr}{R^2}}=\frac pr\ .$ Inegalitatea $\sum \frac{1}{b^{2}+c^{2}-a^{2}}\ \stackrel{(C.B.S.)}{\ \ge\ }\ \frac {9}{a^2+b^2+c^2}$ este slaba

deoarece $\frac{1}{4r^{2}}\ge \frac {9}{a^2+b^2+c^2}\ (*)\ .$ Intr-adevar, $a^2+b^2+c^2=2\left(p^2-r^2-4Rr\right)\ge 2\left[\left(16Rr-5r^2\right)-r^2-4Rr\right]=12r(2R-r)\ge 36r^2\ .$

Problema propusa. Sa se arate ca intr-un triunghi ascutitunghic exista urmatorul lant de relatii $:$

$\boxed{\frac {a}{b^2+c^2-a^2}+\frac {b}{c^2+a^2-c^2}+\frac {c}{a^2+b^2-c^2}\ge\frac {(a+b+c)^2}{3abc}\ge\frac {3(a+b+c)}{ab+bc+ca}\ge\frac {9}{a+b+c}\ge\frac {3(a+b+c)}{a^2+^2+c^2}}\ .$


Proof. $\sum\frac a{b^2+c^2-a^2}=\frac 1{4S}\cdot \sum a\cdot\tan A=$ $\frac 1{4sr}\cdot \sum \frac {a^2}{2R\cos A}=\frac 1{8Rsr}\cdot \sum\frac {a^2}{\cos A}\ \stackrel{C.B.S}{\ge}\ \frac s{2r(R+r)}\implies$ $\boxed{\sum\frac a{b^2+c^2-a^2}\ge \frac s{2r(R+r)}\ge \frac s{3Rr}=\frac{4s^2}{12Rsr}=\frac {(a+b+c)^2}{3abc}}\ .$

PP21. Let $\triangle ABC$ with the orthocenter $H\ ,$ the circumcircle $\mathbb C(O,R)\ ,$ $A=60^0$ and $b\ne c\ .$ Prove that $OH$ (Euler's line) is the exterior bisector of $\widehat{BHC}$ and $HO=|b-c|\ .$

Proof. Suppose w.l.o.g. $c<b$ and let $E\in BH\cap AC\ .$ Hence $\left\{\begin{array}{ccccc}
m\left(\widehat{BHC}\right) & = & 180^{\circ}-A & = & 120^{\circ}\\\\
m\left(\widehat{BOC}\right) & = & 2A & = & 120^{\circ}\end{array}\right\|$ $\implies BHOC$ is cyclic $\implies$ $\left\{\begin{array}{c}
m\left(\widehat{OHE}\right)=m\left(\widehat{BCO}\right)=30^{\circ}\\\\
m\left(\widehat{OHC}\right)=m\left(\widehat{OBC}\right)=30^{\circ}\end{array}\right\|$

Thus, the ray $[HO$ is the exterior bisector of $\widehat{BHC}\ .$ Observe that $A=60^{\circ}\implies$ $3R^2=a^2=b^2+c^2-bc\implies$ $\boxed{HO^2=9R^2-\left(a^2+b^2+c^2\right)}=$ $3a^2-a^2-(a^2+bc)=$

$a^2-bc=\left(b^2+c^2-bc\right)-bc=$ $(b-c)^2\implies \boxed{HO=b-c}\ .$ Otherwise. $\left\{\begin{array}{c}
AH=AO=R\\\\
m\left(\widehat{HAO}\right)=B-C\end{array}\right\|\implies$ $HO=2R\sin\frac {B-C}2\implies$ $2R(\sin B-\sin C)=b-c\ .$



PP22 (O.M. Serbia 1998). Let $\triangle ABC$ with incircle $w=\mathbb C(I,r)\ ,$ its tangent points $(D,E,F)$ with $[BC]\ ,\ [AC]\ ,\ [AB]$ and $\left\{\begin{array}{c}
M\in BI\cap DE\\\\
N\in CI\cap DF\end{array}\right\|\ .$ Prove that $MN\parallel BC\ .$

Proof. Is well known or prove easily that $\left\{\begin{array}{c}
MA\perp MB\\\\
NA\perp NC\end{array}\right\|\ .$ Let the midpoints $X\ ,$ $Y$ of $[DF]\ ,$ $[DE]$ respectively. Thus, $MNXY$ is inscribed in the circle with the

diameter $[MN]$ and $IXDY$ is inscribed in the circle with the diameter $[ID]\ .$ In conclusion, $\widehat{MNC}\equiv\widehat{MXY}\equiv$ $\widehat{IXY}\equiv\widehat{IDY}\equiv$ $\widehat{NCB}$ $\implies MN\parallel BC\ .$


PP23. Let $ABCD$ be a parallelogram and $\left\{\begin{array}{ccc}
M\in [AB] & ; & AB=3\cdot AM\\\\
N\in [BC] & ; & BC=2\cdot BN\\\\
P\in [AD] & ; & AD=4\cdot AP\end{array}\right\|\ .$ Prove that $BD\cap CM\cap NP\ne\emptyset\ \ (*)\ .$

Proof. $\left\{\begin{array}{c}
AB=CD=a\ ;\ X\in PN\cap BD\\\\
AD=BC=b\ ;\ Y\in MC\cap BD\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
XNB\sim XPD\ \implies\ \frac {XB}{XD}=\frac {NB}{PD}=\frac {\frac b2}{\frac {3b}4}\implies\frac {XB}{XD}=\frac 23\\\\
YMB\sim YCD\ \implies\ \frac {YB}{YD}=\frac {MB}{CD}=\frac {\frac {2a}3}a\ \implies\ \frac {YB}{YD}=\frac 23\end{array}\right\|$ $\implies\frac {XB}{XD}=$ $\frac {YB}{YD}\implies X\equiv Y\implies (*)\ .$

Extindere. Let $ABCD$ be a parallelogram and $\left\{\begin{array}{ccc}
M\in[AB] & ; & AB=m\cdot AM\\\\
N\in[BC] & ; & BC=p\cdot BN\\\\
P\in[AD] & ; & AD=n\cdot AP\end{array}\right\|\ .$ Prove that $BD\cap CM\cap NP\ne\emptyset\ \iff\ \left(1-\frac 1m\right)\left(1-\frac 1n\right)=\frac 1p\ .$

PP24. Let $\{a,b,c,d\}\subset\mathbb R^*$ so that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=1$ and $\left(1+\frac{a}{bc}\right)\left(1+\frac{b}{ac}\right)\left(1+\frac{c}{ab}\right)=$ $\dfrac{1}{d^2}\ .$ Ascertain $a+b+c\ .$

Proof. $\left(1+\frac{a}{bc}\right)\left(1+\frac{b}{ac}\right)\left(1+\frac{c}{ab}\right)=\frac{1}{d^2}\iff$ $\underline{\underline 1}+\sum \frac {a}{bc}+\underline{\sum \frac {1}{a^2}}+\frac {1}{abc}=\underline{\underline 1}-2\sum \frac 1a+\underline {\sum \frac {1}{a^2}}+2\sum\frac {1}{bc}$ $\iff$ $\sum \frac {a}{bc}+\frac {1}{abc}=$

$-2\sum \frac 1a+2\sum\frac {1}{bc}\iff$ $\sum a^2+1=-2\sum bc+2\sum a\iff$ $1+\left(\sum a\right)^2-2\sum a=0\iff$ $\left(\sum a-1\right)^2=0\iff a+b+c=1\ .$


$$\mathrm{END}$$
This post has been edited 602 times. Last edited by Virgil Nicula, Sep 9, 2017, 9:20 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404385
  • Total comments: 37
Search Blog
a