I wanna help

by AlastorMoody, Dec 3, 2019, 5:23 AM

I came across a difficulty faced by many people. There's no collection of problems in a particular topic that occured in some particular year. This is my attempt at collecting SOME inequalities from the year 2018-2019
  • CWMI 2019 P4 wrote:
    Let $n$ be a given integer such that $n\ge 2$. Find the smallest real number $\lambda$ with the following property: for any real numbers $x_1,x_2,\ldots ,x_n\in [0,1]$ , there exists integers $\varepsilon_1,\varepsilon_2,\ldots ,\varepsilon_n\in\{0,1\}$ such that the inequality $$\left\vert \sum^j_{k=i} (\varepsilon_k-x_k)\right\vert\le \lambda$$holds for all pairs of integers $(i,j)$ where $1\le i\le j\le n$.


  • Bulgaria JBMO TST 2019 wrote:
    Let $a,b,c\geq 1.$ Find the maximum value of $\frac{\sqrt{a-1}}{a+b}+\frac{\sqrt{b-1}}{b+c}+\frac{\sqrt{c-1}}{c+a}.$


  • ARMO 2019 Grade 9 P6 wrote:
    For $a,b,c$ real numbers not less than $1$ , prove that $$\frac{a+b+c}{4} \geq \frac{\sqrt{ab-1}}{b+c}+\frac{\sqrt{bc-1}}{c+a}+\frac{\sqrt{ca-1}}{a+b}$$.


  • KBO 2019 Grade 8 wrote:
    Given real numbers $a,b,c$ such that $a+b+c+2=abc$. Prove that :
    $(a^2+1)(b^2+1)(c^2+1) \ge 4$


  • Spain MO 2019 wrote:
    Let $a, b, c> 0 .$ Prove that $$\frac{a^2}{b^3c}-\frac{a}{b^2}\geq\frac{c}{b}-\frac{c^2}{a}.$$When does the equality hold ?


  • Kazakhstan MO 2019 Grade 9 P3 wrote:
    Let $a,b,c>0$ and $a+b+c=3$. Prove the inequality,
    $$\sqrt[3]{{\frac{1}{{3{a^2}(8b + 1)}}}} + \sqrt[3]{{\frac{1}{{3{b^2}(8c + 1)}}}} + \sqrt[3]{{\frac{1}{{3{c^2}(8a + 1)}}}} \ge 1$$.


  • Ukraine MO 2019 wrote:
    Let $x,y,z$ be positive reals such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3. $ Prove that
    $$(x-1)(y-1)(z-1)\le\frac{1}{4}(xyz-1).$$


  • Moldova MO 2019 wrote:
    For $a,b,c$ - real numbers and
    $$a+b+c = 4$$$$a^2+b^2+c^2 = 6$$Prove that
    $$ \frac{86}{9} \le a^3+b^3+c^3 \le 10$$


  • St. Petersburg MO 2019 wrote:
    Let $a, b$ and $c$ be non-zero natural numbers such that $c \geq b$ . Show that
    $$a^b\left(a+b\right)^c>c^b a^c.$$


  • Peking University Comprehensive Summer Camp 2019 P4 wrote:
    $a,b,c$ are three real numbers satisfying $a+b+c$ $=$ $a^2+b^2+c^2=2$. Find the minimum and maximum of $abc$.


  • Root Cup Math Competition 2019 wrote:
    Let $a_1,a_2,\cdots,a_n\geq -1  (n\ge 2)$ and $a_1+a_2+\cdots+a_n\geq 0.$ .Prove that$$ (a_1+1)(a_2+1) \cdots (a_n+1) +\frac{n}{4}(a^2_1+a^2_2+\cdots+a^2_n)\geq 1.$$


  • Mongolia MO 2019 Grade 10 P3 wrote:
    Let $a$, $b$, $c$ be real numbers such that $0\leq a\leq b\leq c$. Prove the inequality
    $$(a+c)^2 (b+1)^2\geq (a+b+c+1)(ab+bc+ca+abc)$$


  • Kazakhstan MO 2019 Grade 10 P1 wrote:
    Let $a$, $b$, $c>0$, such that $\tfrac{1}{a}+\tfrac{1}{b}+\tfrac{1}{c}=1$. Prove the inequality
    $$\frac{b+c}{a+bc}+\frac{c+a}{b+ca}+\frac{a+b}{c+ab}\geq \frac{12}{a+b+c-1}$$


  • RMO 2019 P3 wrote:
    Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that
    $$\frac{a}{a^2+b^3+c^3}+\frac{b}{b^2+a^3+c^3}+\frac{c}{c^2+a^3+b^3}\leq\frac{1}{5abc}$$


  • Romania NMO 2019 Grade 9 wrote:
    If $a,b,c\in(0,\infty)$ such that $a+b+c=3$, then
    $$\frac{a}{3a+bc+12}+\frac{b}{3b+ca+12}+\frac{c}{3c+ab+12}\le \frac{3}{16}$$


  • Kosovo MO 2019 Grade 10 P2 wrote:
    Show that for any positive real numbers $a,b,c$ the following inequality is true:
    $$4(a^3+b^3+c^3+3)\geq 3(a+1)(b+1)(c+1)$$When does equality hold?


  • Indian Postals 2018 A P3 wrote:
    Let $a,b,c$ be positive real numbers such that $a^2+b^2+c^2=3$. Prove that $$\frac{1}{a}+\frac {3}{b}+\frac {5}{c}\ge 4a^2+3b^2+2c^2$$what does the equality hold?


  • ELMO SL 2019 A1 wrote:
    Let $a$, $b$, $c$ be positive reals such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Show that $$a^abc+b^bca+c^cab\ge 27bc+27ca+27ab.$$

    Proposed by Milan Haiman


  • Turkey TST 2019 P9 wrote:
    Let $x, y, z$ be real numbers such that $y\geq 2z \geq 4x$ and $$ 2(x^3+y^3+z^3)+15(xy^2+yz^2+zx^2)\geq 16(x^2y+y^2z+z^2x)+2xyz.$$Prove that: $4x+y\geq 4z$


  • Kyiv Math Festival 2019 wrote:
    Let $a,b,c\ge0$ and $a+b+c\ge3.$ Prove that $$a^4+b^3+c^2\ge a^3+b^2+c$$


  • Serbia MO 2019 wrote:
    Let $a,b,c\geq 0.$ Prove that$$\sqrt{\frac{a+2b+3c}{3a+2b+c}}+\sqrt{\frac{b+2c+3a}{3b+2c+a}}+\sqrt{\frac{c+2a+3b}{3c+2a+b}}\geq 3 $$
  • HS Mathematics #2 Q610 wrote:
    Let $x,y,z$ be positive real numbers. Prove that
    $$ \frac{x^2(y+z)}{\sqrt{(z+x)(x+y)}}+\frac{y^2(z+x)}{\sqrt{(x+y)(y+z)}}+\frac{z^2(x+y)}{\sqrt{(y+z)(z+x)}}
 \geq xy+yz+zx.$$


  • MEMO 2019 T1 wrote:
    Determine the smallest and the greatest possible values of the expression
    $$\left( \frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\left( \frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)$$provided $a,b$ and $c$ are non-negative real numbers satisfying $ab+bc+ca=1$.

    Proposed by Walther Janous, Austria


  • Thailand MO 2019 P5 wrote:
    Let $a,b,c$ be positive reals such that $abc=1$. Prove the inequality
    $$\frac{4a-1}{(2b+1)^2} + \frac{4b-1}{(2c+1)^2} + \frac{4c-1}{(2a+1)^2}\geqslant 1.$$


  • Romania NMO 2019 Grade 10 wrote:
    If $a,b,c>0$ then
    $$\frac{1}{abc}+1\ge3\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{a+b+c}\right)$$


  • Kvant 2019 #3 M2550 wrote:
    Let $a,b,c>0$ be real numbers. Prove that
    $$\frac{a+b}{\sqrt{b+c}}+\frac{b+c}{\sqrt{c+a}}+\frac{c+a}{\sqrt{a+b}}\geq \sqrt{2a}+ \sqrt{2b}+ \sqrt{2c}$$Б. Кайрат (Казахстан), А. Храбров


  • China Jiangsu Summer Camp 2019 wrote:
    Let $a$, $b$ and $c$ be positive numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c.$ Prove that
    $$\frac{1}{(2a+b+c)^2}+\frac{1}{(2b+c+a)^2}+\frac{1}{(2c+a+b)^2}\leq
\frac{3}{16}.$$


  • Slovenia TST 2019 P2 wrote:
    Prove, that for any positive real numbers $a, b, c$ who satisfy $a^2+b^2+c^2=1$ the following inequality holds.
    $\sqrt{\frac{1}{a}-a}+\sqrt{\frac{1}{b}-b}+\sqrt{\frac{1}{c}-c} \geq \sqrt{2a}+\sqrt{2b}+\sqrt{2c}$


  • CGMO Sichuan ST 2019 wrote:
    Let $a,b,c,d$ be positive real numbers such that $a+b+c+d=4.$ Prove that
    $$2\left(\frac{1}{ab}+\frac{1}{cd}\right)\geq a^2+b^2+c^2+d^2.$$


  • CMO Summer Camp 2019 wrote:
    Let $x,y,z $ be positive real number such that $xyz(x+y+z)=4.$ Find the minimum value of $(x+y)^2+2(y+z)^2+3(z+x)^2.$


  • Taiwan TST 2019 wrote:
    Let $ a,b,c,d $ be four non-negative reals such that $ a+b+c+d = 4 $. Prove that $$ a\sqrt{3a+b+c}+b\sqrt{3b+c+d}+c\sqrt{3c+d+a}+d\sqrt{3d+a+b} \ge 4\sqrt{5} $$


  • CHKMO 2018 P1 wrote:
    Given that $a,b$, and $c$ are positive real numbers such that $ab + bc + ca \geq 1$, prove that
    \[ \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \geq \frac{\sqrt{3}}{abc} .\]


  • Greece 2018 wrote:
    If $x, y, z$ are positive real numbers such that $x + y + z = 9xyz.$ Prove that:
    $$\frac {x} {\sqrt {x^2+2yz+2}}+\frac {y} {\sqrt {y^2+2zx+2}}+\frac {z} {\sqrt {z^2+2xy+2}}\ge 1.$$
    Consider when equality applies.


  • PAMO SL 2018 A6 wrote:
    Let $a, b, c$ be positive real numbers such that $a^3 + b^3 + c^3 = 5abc$.

    Show that
    \[
    \left( \frac{a + b}{c} \right) \left( \frac{b + c}{a} \right) \left( \frac{c + a}{b} \right) \geq 9.
\]


  • Mongolia 2018 wrote:
    Prove that for $a, b, c > 0$ such that $abc = 1$ following inequality holds $$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{9}{2(a + b + c)} \geq \frac{9}{2}$$


  • Romania NMO 2018 Grade 8 wrote:
    Let $a$, $b$ and $c$ be non-negative numbers such that $ab+ac+bc=3$. Prove that:
    $$\frac{a}{a^2+7}+\frac{b}{b^2+7}+\frac{c}{c^2+7}\leq\frac{3}{8}.$$


  • MEMO 2018 T1 wrote:
    Let $a,b$ and $c$ be positive real numbers satisfying $abc=1.$ Prove that$$\frac{a^2-b^2}{a+bc}+\frac{b^2-c^2}{b+ca}+\frac{c^2-a^2}{c+ab}\leq a+b+c-3.$$


  • New-Zealand MO 2018 wrote:
    Let $a,b,c$ be positive reals such that $\frac{1}{a+2019}+\frac{1}{b+2019}+\frac{1}{c+2019}=\frac{1}{2019}.$ Prove that $$abc\geq{4038}^3.$$


  • Estonia MO 2018 wrote:
    $(1)$ Prove that for all real numbers $x, y, z$
    $$5 (x^2 + y^2 + z^2) \geq4 (xy + yz + zx).$$$(2)$ Prove that for any positive real number $ x$
    $$(x + 1) (x + 2) (x + 5) \geq 36x.$$


  • Balkan MO ShortList 2018 A4 wrote:
    Let $ a, b, c$ be positive real numbers such that $ abc = 1. $ Prove that:
    $$ 2 (a^ 2 + b^ 2 + c^ 2) \left (\frac 1 {a^ 2} + \frac 1{b^ 2}+ \frac 1{c^2}\right)\geq 3(a+ b + c + ab + bc + ca).$$


  • Balkan MO ShortList 2018 A1 wrote:
    Let $a, b, c $ be positive real numbers such that $abc = \frac {2} {3}. $ Prove that:

    $$\frac {ab}{a + b} + \frac {bc} {b + c} + \frac {ca} {c + a} \geqslant  \frac {a+b+c} {a^3+b ^ 3 + c ^ 3}.$$


  • St. Petersburg MO 2018 (Variant) wrote:
    Let $ a, b, c$ be positive numbers such that $a+b+c= 1. $ Show that
    $$\dfrac {a^ 2+b^ 2+c } {(a+b) ^3} +\dfrac {b^ 2+c^ 2+a} {(b +c) ^3} +\dfrac {c^ 2+a^ 2 +b } {( c+a) ^3}> 3$$


  • Romania NMO 2018 Grade 9 P2 wrote:
    Let $a,b,c \geq 0$ and $a+b+c=3.$ Prove that$$\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \geq \frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+a}$$
  • Moldova MO 2018 wrote:
    For real numbers $a,b,c \in [0,1]$ prove that:
    $$\sum_{cyc}\frac{3a^2-2a}{1+b^3+c^3}\le1$$


  • Beijing Girls Tournament 2018 wrote:
    Let $a,b,c$ are positive real numbers . Prove that $$a^3+b^3+c^3+2(ab^2+bc^2+ca^2)\geq3(a^2b+b^2c+c^2a).$$


  • Turkey JBMO TST 2018 P8 wrote:
    $x, y, z$ are positive real numbers and
    $\sqrt {x}, \sqrt {y}, \sqrt {z}$ are lengths of a triangle such that :
    $\frac {x} {y}+\frac {y} {z}+\frac {z} {x} =5$.

    Prove that: $$ \frac {x(y^2-2z^2)} {z}+\frac {y(z^2-2x^2)} {x} +\frac {z(x^2-2y^2)} {y} \geq 0$$


  • HSGS TST 2018-19 wrote:
    $x,y,z$ is non-negative such that: $\frac{x}{{x + 1}} + \frac{y}{{y + 1}} + \frac{z}{{z + 1}} = 1 $. Find minimum and maximum of: $ P = xy + yz + zx + x\sqrt {yz} + y\sqrt {zx} + z\sqrt {xy}$


  • Croatia MO 2018 wrote:
    Let $a, b$ and $c$ be positive real numbers such that $a+b+c=2.$ Prove that $$\frac{(a-1)^2}{b}+\frac{(b-1)^2}{c}+\frac{(c-1)^2}{a}\geq \frac{1}{4}\left(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\right).$$


  • Vietnam 2018 wrote:
    If $a, b, c$ are positive real numbers such that $\sqrt{a+2b} =2+\sqrt{\dfrac{b}{3}}$. Prove that
    \[\frac{a}{{\sqrt {a + 2b} }} + \frac{b}{{\sqrt {b + 2a} }} \ge 2\]


  • Dragon Boat Festival 2018 wrote:
    $(3)$ Let $a,b,c;x,y,z\in[-1,1]$ and $1+2abc\geq a^2+b^2+c^2 , 1+2xyz\geq x^2+y^2+z^2.$ Prove that$$1+2abcxyz\geq a^2x^2+b^2y^2+c^2z^2.$$
  • Dragon Boat Festival 2018 wrote:
    $(2)$ Let $a,b,c,d$ be positive real numbers .Prove that$$\sqrt{\frac{a}{a+b+c}}+\sqrt{\frac{b}{b+c+d}}+\sqrt{\frac{c}{c+d+a}}+\sqrt{\frac{d}{d+a+b}}\leq\frac{4}{\sqrt{3}}.$$
  • Dragon Boat Festival 2018 wrote:
    $(1)$ Let $a_1,a_2,\cdots ,a_n$ be positive real numbers .Prove that$$\sqrt{\frac{a_1}{a_1+a_2}}+\sqrt{\frac{a_2}{a_2+a_3}}+\cdots  +\sqrt{\frac{a_n}{a_n+a_1}}\leq n-1.$$

  • Mathematics Teaching #10 Q1041 wrote:
    Let $a,b,c>0.$ Prove that$$\left(1+\frac{a}{b} \right) \left(1+\frac{b}{c} \right) \left(1+\frac{c}{a} \right)+1\leq\frac{3(a^3+b^3+c^3)}{abc}.$$


  • Delhi INMOTC 2018 wrote:
    For all $a,b,c \in \mathbb{R}^+$, Prove
    $$(a+b+c)^5 \geq 81abc(a^2+b^2+c^2)$$

  • Macedonia JBMO TST 2018 wrote:
    Let $x$, $y$, and $z$ be positive real numbers such that $x + y + z = 1$. Prove that

    $\frac{(x+y)^3}{z} + \frac{(y+z)^3}{x} + \frac{(z+x)^3}{y} + 9xyz \ge 9(xy + yz + zx)$.

    When does equality hold?


  • Moldova JBMO TST 2018 wrote:
    Let $a,b,c \in\mathbb{R^*_+}$.Prove the inequality $\frac{a^2+4}{b+c}+\frac{b^2+9}{c+a}+\frac{c^2+16}{a+b}\ge9$.


  • Bulgaria JBMO TST 2018 P2 wrote:
    For all positive reals $a$ and $b$, show that
    $$\frac{a^2+b^2}{2a^5b^5} + \frac{81a^2b^2}{4} + 9ab > 18.$$


  • Greece JBMO TST 2018 P1 wrote:
    Let $a,b,c,d$ be non-negative real numbers such that $a^2+b^2+c^2+d^2=4$. Prove that there exist two numbers with sum bigger or equal to $2$.


  • FBH JBMO TST 2018 wrote:
    1. For $a,b,c$ positive real numbers such that $ab+bc+ca=3$ prove:
    $\frac{1}{1+a^2(b+c)}+\frac{1}{1+a^2(b+c)}+\frac{1}{1+a^2(b+c)} \leq \frac{a+b+c}{3abc}$


  • Moldova JBMO TST 2018 P6 wrote:
    Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Show that
    $$\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\geq \frac{3}{2}.$$


  • Slovenia TST 2018 P3 wrote:
    Let $a$, $b$ and $c$ be positive real numbers satisfying $abc=1$. Prove that the following inequality holds:
    $$\frac{a+b+c}{3}\geq\frac{a}{a^2b+2}+\frac{b}{b^2c+2}+\frac{c}{c^2a+2}.$$

This post has been edited 6 times. Last edited by AlastorMoody, Dec 3, 2019, 5:53 AM

Comment

0 Comments

Spamming!!!

avatar

AlastorMoody
Shouts
Submit
  • Alastor #proyaargodyaar

    by GeoMetrix, Apr 24, 2020, 5:41 AM

  • @below why do you look so jobless :rotfl:

    by AlastorMoody, Apr 16, 2020, 7:45 AM

  • e
    eeeeeeeeeeeeeee

    by gatorpokemon, Apr 15, 2020, 12:59 AM

  • Thanks a lot guyss :D and @below congrats for INMO merit

    by AlastorMoody, Mar 19, 2020, 3:25 PM

  • Ahh! Now u belong to one of those kinds of ppl :) :gleam: congrats!

    by RAMUGAUSS, Mar 5, 2020, 7:28 PM

  • Congo for IMOTC!

    by PhysicsMonster_01, Mar 3, 2020, 1:55 PM

  • Congrats alastor for IMOTC.

    by GeoMetrix, Mar 3, 2020, 11:49 AM

  • im going to say something

    by bingo2019, Feb 19, 2020, 1:43 AM

  • Probably because of JEE @below.

    by gamerrk1004, Jan 29, 2020, 3:56 PM

  • Why are you living Olympiads Now ?
    You have 2 more years in your high School ...

    by a_simple_guy, Jan 20, 2020, 6:05 AM

  • contrib!!!

    by Kagebaka, Jan 18, 2020, 9:48 PM

  • Hello :)

    by A-student, Dec 19, 2019, 1:21 PM

  • hii.............................

    by GeoMetrix, Nov 26, 2019, 12:50 PM

  • First shout man

    by GAUSSIANGAUSS, Nov 16, 2019, 3:36 PM

14 shouts
Tags
About Owner
  • Posts: 2125
  • Joined: Oct 11, 2017
Blog Stats
  • Blog created: Nov 15, 2019
  • Total entries: 21
  • Total visits: 1211
  • Total comments: 47
Search Blog
a