idk:( :( :(
by AlastorMoody, Jul 5, 2020, 8:04 AM
(1) Making Inversion About Hyperbola Easier Using Inversion About Circle
Inversion is Pretty Cool (I'm talking about circle ofc)... how about performing Inversion About Conics?
Ofcourse, I haven't discovered this, but I'll share though 'coz it's pretty Interesting!! (Thanks a lot to Vrangr
)
Defining Inversion About Hyperbola
We'll First define the Polar of a Conic:
For a conic
and a point
, The Polar of
WRT
is the locus of all points such that,
, where
(where
is a line passing through
).
Lemma: For a conic
and a point
, Let
be the Polar of
WRT
. Let a line
and Let
. Let
and Let
. Then,
.
Proof: (By Vrangr) By LaHire's Theorem,
is polar of
. Again By LaHire,
lies on the Polar of

When we Take
to be the center of
, we get the following:
Surprisingly, the above Corollary is quite useful! Now, to simplify we can Define Inversion About Hyperbola with help of Circle Inversion and the Proof follows from the definition of Polars.
Take a Hyperbola
with
as the center of
. Take Any Random Point
in the plane and Suppose
. Let
be circle at
with radius
. Then, the Image of
after the Inversion about
coincides with the Image of
after the Inversion about
.
Some Well-Known Lemmas
(This is Quite Well-Known and Easy to Prove,). We'll also need some basic lemmas regarding the center of rectangular hyperbola
. Check This BlogPost for the proofs.
From Now on, Let
be the Circum-Rectangular Hyperbola WRT
lies on the Nine-Point Circle WRT
Application (In ourFavourite Comfortable Orthocenter Configuration)
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(20cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -9.872229745398423, xmax = 7.124774747659737, ymin = -5.9755366782192745, ymax = 4.125142221343976; /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen ubqqys = rgb(0.29411764705882354,0,0.5098039215686274); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen sexdts = rgb(0.1803921568627451,0.49019607843137253,0.19607843137254902);
draw((-4.68,3.25)--(-6.62,-3.61)--(1.48,-3.59)--cycle, linewidth(0.4) + rvwvcq);
/* draw figures */
draw((-4.68,3.25)--(-6.62,-3.61), linewidth(0.4) + rvwvcq);
draw((-6.62,-3.61)--(1.48,-3.59), linewidth(0.4) + rvwvcq);
draw((1.48,-3.59)--(-4.68,3.25), linewidth(0.4) + rvwvcq);
draw(circle((-2.5762981745883096,-1.0492392917345015), 4.786336789010386), linewidth(0.4));
draw((-4.66740365082338,-1.851521416530997)--(-1.7090511261687018,3.6578726056864355), linewidth(0.4));
draw((-4.68,3.25)--(-4.663073659054051,-3.605168083108775), linewidth(0.4) + linetype("4 4") + ubqqys);
draw((-6.62,-3.61)--(-2.1375183639556625,0.42685480672998877), linewidth(0.4) + linetype("4 4") + ubqqys);
draw((-6.014935226432025,-1.4704410584142662)--(1.48,-3.59), linewidth(0.4) + linetype("4 4") + ubqqys);
draw(circle((-3.6218509127058467,-1.4503803541327478), 2.3931683945051927), linewidth(0.4) + linetype("2 2"));
pair hyperbolaLeft1 (real t) {return (2.054274217730499*(1+t^2)/(1-t^2),2.054274217730499*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (2.054274217730499*(-1-t^2)/(1-t^2),2.054274217730499*(-2)*t/(1-t^2));}
draw(shift((-3.1882273884960415,0.90317559457772))*rotate(-86.0207158012572)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + dtsfsf); draw(shift((-3.1882273884960415,0.90317559457772))*rotate(-86.0207158012572)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + dtsfsf); /* hyperbola construction */
draw((-6.014935226432025,-1.4704410584142662)--(-2.1375183639556625,0.42685480672998877), linewidth(0.4));
draw((xmin, -7.284011802732607*xmin-22.319910333022797)--(xmax, -7.284011802732607*xmax-22.319910333022797), linewidth(0.4) + sexdts); /* line */
draw(circle((-3.188227388496041,0.9031755945777192), 2.0635395657672815), linewidth(0.4) + dtsfsf);
draw((-4.88236010673622,-0.2750051523686752)--(-1.2392610068520262,0.2251449295569858), linewidth(0.4) + sexdts);
draw(circle((-2.87911369424802,-1.348412202711139), 2.2727073909484585), linewidth(0.4) + ubqqys);
draw(circle((-2.57,-3.6), 4.050012345660203), linewidth(0.4));
draw((-4.88236010673622,-0.2750051523686752)--(-2.57,-3.6), linewidth(0.4) + sexdts);
draw((-2.57,-3.6)--(-1.2392610068520262,0.2251449295569858), linewidth(0.4) + sexdts);
/* dots and labels */
dot((-4.68,3.25),dotstyle);
label("$A$", (-4.619876717625532,3.386747763858663), NE * labelscalefactor);
dot((-6.62,-3.61),dotstyle);
label("$B$", (-6.570352643058436,-3.467781916948398), NE * labelscalefactor);
dot((1.48,-3.59),dotstyle);
label("$C$", (1.5380544183840634,-3.4538499460524488), NE * labelscalefactor);
dot((-4.663073659054051,-3.605168083108775),dotstyle);
label("$D$", (-4.605944746729583,-3.467781916948398), NE * labelscalefactor);
dot((-2.1375183639556625,0.42685480672998877),dotstyle);
label("$E$", (-2.0842580145627574,0.5724896428769022), NE * labelscalefactor);
dot((-6.014935226432025,-1.4704410584142662),dotstyle);
label("$F$", (-5.957345923636666,-1.3361903698681534), NE * labelscalefactor);
dot((-4.66740365082338,-1.851521416530997),dotstyle);
label("$H$", (-4.605944746729583,-1.712353584058785), NE * labelscalefactor);
dot((-1.7090511261687018,3.6578726056864355),dotstyle);
label("$G$", (-1.6523669167883288,3.7907749198411933), NE * labelscalefactor);
dot((-3.188227388496041,0.9031755945777192),dotstyle);
label("$K$", (-3.129155831758956,1.0461766533391788), NE * labelscalefactor);
dot((-3.0608105567941233,-0.024930111405843853),dotstyle);
label("$L$", (-3.003768093695412,0.1127346033105749), NE * labelscalefactor);
dot((-2.57,-3.6),dotstyle);
label("$M$", (-2.516149112337186,-3.4538499460524488), NE * labelscalefactor);
dot((-2.9075628643510822,-1.1411881119024914),dotstyle);
label("$N$", (-2.8505164138399697,-1.00182306836537), NE * labelscalefactor);
dot((-4.88236010673622,-0.2750051523686752),dotstyle);
label("$P$", (-4.8288562810647715,-0.1380408728165127), NE * labelscalefactor);
dot((-1.2392610068520262,0.2251449295569858),dotstyle);
label("$Q$", (-1.1786799063260522,0.3635100794376625), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/b/7/d/b7df395f0a2fc6ce2e1a8e911585d8583bdd3391.png)
Keep everything same as we defined earlier. Let
be the orthic triangle of
. Applying Pascal on
lies on
. Suppose Let
. Let
. Let
be the circle at
with radius
.
Then According to our Corollary:
is collinear. More Surprisingly, Let
be Polar Chord of
WRT
. Then,
lie on
. (Now this looks something familiar, isn't it?
That's because, when we take
and
leading to the "Three Tangents Lemma". More Importantly,
MidPoint of arc
! So Did we Generalise?
)
Well Anyways, To Prove:
, Just Observe:
. Hence,
is cyclic.
Wait!!!! It's not over yet
(2) On some Special Hyperbolas
#1)A Hyperbola having (The Fourth Intersection with circumcircle coinciding with A)
In This BlogPost, we had proved that if
is the Fourth Intersection of
, then the Center of
is midpoint of
. But What if
coincides with
. Moreoever, when does that Happen?!!
Anyway We'll investigate that!
Let
be orthic triangle WRT
. Let
be midpoint of arc
. Suppose,
is the Circum-Rectangular Hyperbola WRT
passing through
. Now, from the configuration of "The Three Tangents Lemma",
is Perpendicular Bisector of
. Also, from our (Corollary),
is the center of
. But simply,
is midpoint of
The Fourth Intersection of
with
coincides with
. 
Hence, the Tangent to
at
and the Tangent to
at
are the same!! Cool
Let's Lean on to the Olympiad Side!!
(Problem: India TST Practice #2 2019 P1)
Solution: Add the Circum-Rectangular Hyperbola of
passing through
. Let
be midpoint of
is center of
. Redefine
as
. Hence,
is Parallelogram, but
is Rectangle. 
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(16cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -9.42510097180991, xmax = 8.97526050527123, ymin = -5.821934424538, ymax = 5.11270661717; /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen ubqqys = rgb(0.29411764705882354,0,0.5098039215686274); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961);
draw((-4.44,3.89)--(-7,-3.89)--(4.36,-4.41)--cycle, linewidth(2) + rvwvcq);
/* draw figures */
draw((-4.44,3.89)--(-7,-3.89), linewidth(0.4) + rvwvcq);
draw((-7,-3.89)--(4.36,-4.41), linewidth(0.4) + rvwvcq);
draw((4.36,-4.41)--(-4.44,3.89), linewidth(0.4) + rvwvcq);
draw((-4.44,3.89)--(-1.32,-4.15), linewidth(0.4) + ubqqys);
draw(circle((-1.1981438380595681,-1.4879115391474944), 6.279455700744047), linewidth(0.4));
pair hyperbolaLeft1 (real t) {return (2.4306337194779517*(1+t^2)/(1-t^2),2.4306337194779517*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (2.4306337194779517*(-1-t^2)/(1-t^2),2.4306337194779517*(-2)*t/(1-t^2));}
draw(shift((-4.561856161940435,1.2279115391474906))*rotate(-75.76944635286395)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + dtsfsf); draw(shift((-4.561856161940435,1.2279115391474906))*rotate(-75.76944635286395)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + dtsfsf); /* hyperbola construction */
draw((-4.44,3.89)--(-4.683712323880865,-1.4341769217050127), linewidth(0.4) + ubqqys);
draw((-4.561856161940432,1.227911539147494)--(-1.32,-4.15), linewidth(0.4));
draw((-4.44,3.89)--(-3.1860769586427318,-1.0543670331088528), linewidth(0.4));
draw((-5.93763536523813,3.5101901114038356)--(-4.561856161940432,1.227911539147494), linewidth(0.4));
draw((-4.683712323880865,-1.4341769217050127)--(-3.1860769586427318,-1.0543670331088528), linewidth(0.4) + ubqqys);
draw((-5.93763536523813,3.5101901114038356)--(-4.44,3.89), linewidth(0.4) + ubqqys);
/* dots and labels */
dot((-4.44,3.89),dotstyle);
label("$A$", (-4.372542697365499,4.041865908257907), NE * labelscalefactor);
dot((-7,-3.89),dotstyle);
label("$B$", (-6.936527493352215,-3.740582060737028), NE * labelscalefactor);
dot((4.36,-4.41),dotstyle);
label("$C$", (4.4204169265183575,-4.253379019934369), NE * labelscalefactor);
dot((-4.683712323880865,-1.4341769217050127),dotstyle);
label("$H$", (-4.62894117696417,-1.2821731092909536), NE * labelscalefactor);
dot((-1.32,-4.15),dotstyle);
label("$D$", (-1.2655964151698307,-3.996980540335698), NE * labelscalefactor);
dot((-3.1860769586427318,-1.0543670331088528),dotstyle);
label("$E$", (-3.120714826383749,-0.9051165216458503), NE * labelscalefactor);
dot((-4.561856161940432,1.227911539147494),dotstyle);
label("$K$", (-4.508283068917736,1.3723052677305743), NE * labelscalefactor);
dot((-5.93763536523813,3.5101901114038356),dotstyle);
label("$F$", (-5.88076904794592,3.664809320612803), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/1/c/e/1ce6ebdecc456351bffb2c29875c670a5b904cc4.png)
#2) MathPassionForever's Observation From my Misinterpretation of @bove Hyperbola
This Observation is Due to MathPassionForever. Here we deal with the Circum-Rectangular Hyperbola
WRT
passign through the
Humpty Point. Let
be the
Humpty Point.
Proof: It's well-known that
concur, say at
(
is the Orthic Triangle)
Proof: We know the tangen to
at
is parallel to
. From the (Corollary) mentioned in (1)
Where
is the midpoint of
. Hence,
is tangent to
#3) Darij Grinberg's Medial Hyperbola
This cute name was given By Darij Grinberg during 2004~2005... ok enough history
Suppose,
antipode in
. then The Circum-Rectangular Hyperbola passing through
is the A-Medial Hyperbola. To make everything look better, the
Medial Hyperbola is the Isogonal Conjugate of the Perpendicular bisector of
. This property appeared recently in enhanced's post: Easy Conic
Anyway,
The
mentioned is nothing but the
Medial Hyperbola. Now, we also know,
symmedian is tangent to
So, suppose if
is the Isogonal Conjugate of Perpendicular Bisector of
. Then, we wanna show
is the center of
. Let
be
Antipode in
. Since,
is the center of

![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(20cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -14.05658698813138, xmax = 16.710851987372646, ymin = -12.475466754866938, ymax = 5.808462144510303; /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen ubqqys = rgb(0.29411764705882354,0,0.5098039215686274); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961);
draw((-7.084221324561282,4.063766311689345)--(-8.8,-2.17)--(0.14,-2.21)--cycle, linewidth(2) + rvwvcq);
/* draw figures */
draw((-7.084221324561282,4.063766311689345)--(-8.8,-2.17), linewidth(0.4) + rvwvcq);
draw((-8.8,-2.17)--(0.14,-2.21), linewidth(0.4) + rvwvcq);
draw((0.14,-2.21)--(-7.084221324561282,4.063766311689345), linewidth(0.4) + rvwvcq);
draw(circle((-4.320424822444672,-0.04994781638420633), 4.955927262644594), linewidth(0.4));
draw((-7.103371679671937,-0.2163380555422419)--(-1.5566283203280638,-4.163661944457758), linewidth(0.4) + ubqqys);
draw((-1.5566283203280638,-4.163661944457758)--(0.14,-2.21), linewidth(0.4));
draw((-1.5566283203280638,-4.163661944457758)--(-8.8,-2.17), linewidth(0.4));
pair hyperbolaLeft1 (real t) {return (3.349203943246869*(1+t^2)/(1-t^2),3.349203943246869*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (3.349203943246869*(-1-t^2)/(1-t^2),3.349203943246869*(-2)*t/(1-t^2));}
draw(shift((-4.33,-2.19))*rotate(-28.180598996547513)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + dtsfsf); draw(shift((-4.33,-2.19))*rotate(-28.180598996547513)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + dtsfsf); /* hyperbola construction */
draw((-7.084221324561282,4.063766311689345)--(-1.5566283203280638,-4.163661944457758), linewidth(0.4) + ubqqys);
draw((-7.084221324561282,4.063766311689345)--(-4.371774682264501,-11.526641486115832), linewidth(0.4) + ubqqys);
draw((-4.371774682264501,-11.526641486115832)--(-1.5566283203280638,-4.163661944457758), linewidth(0.4) + ubqqys);
draw((-4.33,-2.19)--(-4.371774682264501,-11.526641486115832), linewidth(0.4) + ubqqys);
draw((-7.103371679671937,-0.2163380555422419)--(-7.084221324561282,4.063766311689345), linewidth(0.4) + ubqqys);
/* dots and labels */
dot((-7.084221324561282,4.063766311689345),dotstyle);
label("$A$", (-6.995207551130457,4.3205286202851205), NE * labelscalefactor);
dot((-8.8,-2.17),dotstyle);
label("$B$", (-8.71011398583068,-1.9086168116406432), NE * labelscalefactor);
dot((0.14,-2.21),dotstyle);
label("$C$", (0.2427063717954904,-1.9590552361906495), NE * labelscalefactor);
dot((-4.33,-2.19),dotstyle);
label("$M$", (-4.221094200880094,-1.9338360239156465), NE * labelscalefactor);
dot((-7.103371679671937,-0.2163380555422419),dotstyle);
label("$H$", (-6.995207551130457,0.033262533534594727), NE * labelscalefactor);
dot((-1.5566283203280638,-4.163661944457758),dotstyle);
label("$A'$", (-1.3208847892547142,-4.607072525065974), NE * labelscalefactor);
dot((-4.371774682264501,-11.526641486115832),dotstyle);
label("$K$", (-4.2715326254301,-11.26494456566679), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/8/a/7/8a78a9690e15a316da0076e1afe15548ec8ad2b7.png)
The Fact that
is tangent to
can be proved using the Main Powerful Corollary that we proved earlier. To write it out, the tangent at
should intersect the
symmedian such that the intersection also lies on
the intersection clearly if
.
(Just too much in a Single Post I guess...
)
Inversion is Pretty Cool (I'm talking about circle ofc)... how about performing Inversion About Conics?


Defining Inversion About Hyperbola
We'll First define the Polar of a Conic:
For a conic












Lemma: For a conic


























Proof: (By Vrangr) By LaHire's Theorem,









When we Take


Corollary wrote:
Let
be a chord of Rectangular Hyperbola
. Let
be midpoint of
and
. If
is center of
, Then
collinear.










Surprisingly, the above Corollary is quite useful! Now, to simplify we can Define Inversion About Hyperbola with help of Circle Inversion and the Proof follows from the definition of Polars.
Take a Hyperbola
















Some Well-Known Lemmas
Well-Known #1 wrote:
Let
(Rectangular Hyperbola) with center
. Then, reflection of
over
lies on 








From Now on, Let


Lemma #2 wrote:
Let
be Orthocenter WRT
. Then,






Lemma #3 wrote:
Let
be the Fourth-Intersection of
with
. Suppose,
be the midpoint of
. Then,
is the center of 







Corollary#4 wrote:


Application (In our
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(20cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -9.872229745398423, xmax = 7.124774747659737, ymin = -5.9755366782192745, ymax = 4.125142221343976; /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen ubqqys = rgb(0.29411764705882354,0,0.5098039215686274); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen sexdts = rgb(0.1803921568627451,0.49019607843137253,0.19607843137254902);
draw((-4.68,3.25)--(-6.62,-3.61)--(1.48,-3.59)--cycle, linewidth(0.4) + rvwvcq);
/* draw figures */
draw((-4.68,3.25)--(-6.62,-3.61), linewidth(0.4) + rvwvcq);
draw((-6.62,-3.61)--(1.48,-3.59), linewidth(0.4) + rvwvcq);
draw((1.48,-3.59)--(-4.68,3.25), linewidth(0.4) + rvwvcq);
draw(circle((-2.5762981745883096,-1.0492392917345015), 4.786336789010386), linewidth(0.4));
draw((-4.66740365082338,-1.851521416530997)--(-1.7090511261687018,3.6578726056864355), linewidth(0.4));
draw((-4.68,3.25)--(-4.663073659054051,-3.605168083108775), linewidth(0.4) + linetype("4 4") + ubqqys);
draw((-6.62,-3.61)--(-2.1375183639556625,0.42685480672998877), linewidth(0.4) + linetype("4 4") + ubqqys);
draw((-6.014935226432025,-1.4704410584142662)--(1.48,-3.59), linewidth(0.4) + linetype("4 4") + ubqqys);
draw(circle((-3.6218509127058467,-1.4503803541327478), 2.3931683945051927), linewidth(0.4) + linetype("2 2"));
pair hyperbolaLeft1 (real t) {return (2.054274217730499*(1+t^2)/(1-t^2),2.054274217730499*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (2.054274217730499*(-1-t^2)/(1-t^2),2.054274217730499*(-2)*t/(1-t^2));}
draw(shift((-3.1882273884960415,0.90317559457772))*rotate(-86.0207158012572)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + dtsfsf); draw(shift((-3.1882273884960415,0.90317559457772))*rotate(-86.0207158012572)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + dtsfsf); /* hyperbola construction */
draw((-6.014935226432025,-1.4704410584142662)--(-2.1375183639556625,0.42685480672998877), linewidth(0.4));
draw((xmin, -7.284011802732607*xmin-22.319910333022797)--(xmax, -7.284011802732607*xmax-22.319910333022797), linewidth(0.4) + sexdts); /* line */
draw(circle((-3.188227388496041,0.9031755945777192), 2.0635395657672815), linewidth(0.4) + dtsfsf);
draw((-4.88236010673622,-0.2750051523686752)--(-1.2392610068520262,0.2251449295569858), linewidth(0.4) + sexdts);
draw(circle((-2.87911369424802,-1.348412202711139), 2.2727073909484585), linewidth(0.4) + ubqqys);
draw(circle((-2.57,-3.6), 4.050012345660203), linewidth(0.4));
draw((-4.88236010673622,-0.2750051523686752)--(-2.57,-3.6), linewidth(0.4) + sexdts);
draw((-2.57,-3.6)--(-1.2392610068520262,0.2251449295569858), linewidth(0.4) + sexdts);
/* dots and labels */
dot((-4.68,3.25),dotstyle);
label("$A$", (-4.619876717625532,3.386747763858663), NE * labelscalefactor);
dot((-6.62,-3.61),dotstyle);
label("$B$", (-6.570352643058436,-3.467781916948398), NE * labelscalefactor);
dot((1.48,-3.59),dotstyle);
label("$C$", (1.5380544183840634,-3.4538499460524488), NE * labelscalefactor);
dot((-4.663073659054051,-3.605168083108775),dotstyle);
label("$D$", (-4.605944746729583,-3.467781916948398), NE * labelscalefactor);
dot((-2.1375183639556625,0.42685480672998877),dotstyle);
label("$E$", (-2.0842580145627574,0.5724896428769022), NE * labelscalefactor);
dot((-6.014935226432025,-1.4704410584142662),dotstyle);
label("$F$", (-5.957345923636666,-1.3361903698681534), NE * labelscalefactor);
dot((-4.66740365082338,-1.851521416530997),dotstyle);
label("$H$", (-4.605944746729583,-1.712353584058785), NE * labelscalefactor);
dot((-1.7090511261687018,3.6578726056864355),dotstyle);
label("$G$", (-1.6523669167883288,3.7907749198411933), NE * labelscalefactor);
dot((-3.188227388496041,0.9031755945777192),dotstyle);
label("$K$", (-3.129155831758956,1.0461766533391788), NE * labelscalefactor);
dot((-3.0608105567941233,-0.024930111405843853),dotstyle);
label("$L$", (-3.003768093695412,0.1127346033105749), NE * labelscalefactor);
dot((-2.57,-3.6),dotstyle);
label("$M$", (-2.516149112337186,-3.4538499460524488), NE * labelscalefactor);
dot((-2.9075628643510822,-1.1411881119024914),dotstyle);
label("$N$", (-2.8505164138399697,-1.00182306836537), NE * labelscalefactor);
dot((-4.88236010673622,-0.2750051523686752),dotstyle);
label("$P$", (-4.8288562810647715,-0.1380408728165127), NE * labelscalefactor);
dot((-1.2392610068520262,0.2251449295569858),dotstyle);
label("$Q$", (-1.1786799063260522,0.3635100794376625), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/b/7/d/b7df395f0a2fc6ce2e1a8e911585d8583bdd3391.png)
Keep everything same as we defined earlier. Let

















Then According to our Corollary:



















Well Anyways, To Prove:




Wait!!!! It's not over yet

(2) On some Special Hyperbolas
#1)A Hyperbola having (The Fourth Intersection with circumcircle coinciding with A)
In This BlogPost, we had proved that if









Let






















Hence, the Tangent to





Let's Lean on to the Olympiad Side!!

(Problem: India TST Practice #2 2019 P1)
India TST 2019 Practice Test #2 P1 wrote:
Let the points
and
be the circumcenter and orthocenter of an acute angled triangle
Let
be the midpoint of
Let
be the point on the angle bisector of
such that
Let
be the point such that
is a rectangle. Prove that
are collinear.






























![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(16cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -9.42510097180991, xmax = 8.97526050527123, ymin = -5.821934424538, ymax = 5.11270661717; /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen ubqqys = rgb(0.29411764705882354,0,0.5098039215686274); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961);
draw((-4.44,3.89)--(-7,-3.89)--(4.36,-4.41)--cycle, linewidth(2) + rvwvcq);
/* draw figures */
draw((-4.44,3.89)--(-7,-3.89), linewidth(0.4) + rvwvcq);
draw((-7,-3.89)--(4.36,-4.41), linewidth(0.4) + rvwvcq);
draw((4.36,-4.41)--(-4.44,3.89), linewidth(0.4) + rvwvcq);
draw((-4.44,3.89)--(-1.32,-4.15), linewidth(0.4) + ubqqys);
draw(circle((-1.1981438380595681,-1.4879115391474944), 6.279455700744047), linewidth(0.4));
pair hyperbolaLeft1 (real t) {return (2.4306337194779517*(1+t^2)/(1-t^2),2.4306337194779517*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (2.4306337194779517*(-1-t^2)/(1-t^2),2.4306337194779517*(-2)*t/(1-t^2));}
draw(shift((-4.561856161940435,1.2279115391474906))*rotate(-75.76944635286395)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + dtsfsf); draw(shift((-4.561856161940435,1.2279115391474906))*rotate(-75.76944635286395)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + dtsfsf); /* hyperbola construction */
draw((-4.44,3.89)--(-4.683712323880865,-1.4341769217050127), linewidth(0.4) + ubqqys);
draw((-4.561856161940432,1.227911539147494)--(-1.32,-4.15), linewidth(0.4));
draw((-4.44,3.89)--(-3.1860769586427318,-1.0543670331088528), linewidth(0.4));
draw((-5.93763536523813,3.5101901114038356)--(-4.561856161940432,1.227911539147494), linewidth(0.4));
draw((-4.683712323880865,-1.4341769217050127)--(-3.1860769586427318,-1.0543670331088528), linewidth(0.4) + ubqqys);
draw((-5.93763536523813,3.5101901114038356)--(-4.44,3.89), linewidth(0.4) + ubqqys);
/* dots and labels */
dot((-4.44,3.89),dotstyle);
label("$A$", (-4.372542697365499,4.041865908257907), NE * labelscalefactor);
dot((-7,-3.89),dotstyle);
label("$B$", (-6.936527493352215,-3.740582060737028), NE * labelscalefactor);
dot((4.36,-4.41),dotstyle);
label("$C$", (4.4204169265183575,-4.253379019934369), NE * labelscalefactor);
dot((-4.683712323880865,-1.4341769217050127),dotstyle);
label("$H$", (-4.62894117696417,-1.2821731092909536), NE * labelscalefactor);
dot((-1.32,-4.15),dotstyle);
label("$D$", (-1.2655964151698307,-3.996980540335698), NE * labelscalefactor);
dot((-3.1860769586427318,-1.0543670331088528),dotstyle);
label("$E$", (-3.120714826383749,-0.9051165216458503), NE * labelscalefactor);
dot((-4.561856161940432,1.227911539147494),dotstyle);
label("$K$", (-4.508283068917736,1.3723052677305743), NE * labelscalefactor);
dot((-5.93763536523813,3.5101901114038356),dotstyle);
label("$F$", (-5.88076904794592,3.664809320612803), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/1/c/e/1ce6ebdecc456351bffb2c29875c670a5b904cc4.png)
#2) MathPassionForever's Observation From my Misinterpretation of @bove Hyperbola
This Observation is Due to MathPassionForever. Here we deal with the Circum-Rectangular Hyperbola





Lemma #1 wrote:
If
is the Circum-Rectangular Hyperbola WRT
passing through the
Humpty Point, say
, Then on
, 










Lemma #2 wrote:
If
is the Orthic Triangle WRT
and
is the Circum-Rectangular Hyperbola WRT
passing through the
Humpty Point, namely
, Then,
is Tangent to
at
.


















#3) Darij Grinberg's Medial Hyperbola
This cute name was given By Darij Grinberg during 2004~2005... ok enough history

Suppose,







Anyway,
enhanced wrote:
In a
let
be the isogonal conjugate of the perpendicular bisector of
then show that
symmedian is tangent to
at 






AlastorMoody wrote:
Under Isogonal conjugation on
, the midpoint of
maps to
. Now the
median and perpendicular bisector of
intersect exactly at one point, which is midpoint of
and since, isogonal conjugation preserves intersection
symmedian is tangent to
at 
Similarly, for:
Let the line be
, now,
and since,
isogonal of
is tangent to
at 










Similarly, for:
WizardMath wrote:
A line passing through none of the vertices of the triangle cuts
at
, then the isogonal of
is the tangent at
to the circumconic
of
that is the isogonal conjugate of the line.

















So, suppose if






















![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(20cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -14.05658698813138, xmax = 16.710851987372646, ymin = -12.475466754866938, ymax = 5.808462144510303; /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen ubqqys = rgb(0.29411764705882354,0,0.5098039215686274); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961);
draw((-7.084221324561282,4.063766311689345)--(-8.8,-2.17)--(0.14,-2.21)--cycle, linewidth(2) + rvwvcq);
/* draw figures */
draw((-7.084221324561282,4.063766311689345)--(-8.8,-2.17), linewidth(0.4) + rvwvcq);
draw((-8.8,-2.17)--(0.14,-2.21), linewidth(0.4) + rvwvcq);
draw((0.14,-2.21)--(-7.084221324561282,4.063766311689345), linewidth(0.4) + rvwvcq);
draw(circle((-4.320424822444672,-0.04994781638420633), 4.955927262644594), linewidth(0.4));
draw((-7.103371679671937,-0.2163380555422419)--(-1.5566283203280638,-4.163661944457758), linewidth(0.4) + ubqqys);
draw((-1.5566283203280638,-4.163661944457758)--(0.14,-2.21), linewidth(0.4));
draw((-1.5566283203280638,-4.163661944457758)--(-8.8,-2.17), linewidth(0.4));
pair hyperbolaLeft1 (real t) {return (3.349203943246869*(1+t^2)/(1-t^2),3.349203943246869*2*t/(1-t^2));} pair hyperbolaRight1 (real t) {return (3.349203943246869*(-1-t^2)/(1-t^2),3.349203943246869*(-2)*t/(1-t^2));}
draw(shift((-4.33,-2.19))*rotate(-28.180598996547513)*graph(hyperbolaLeft1,-0.99,0.99), linewidth(0.4) + dtsfsf); draw(shift((-4.33,-2.19))*rotate(-28.180598996547513)*graph(hyperbolaRight1,-0.99,0.99), linewidth(0.4) + dtsfsf); /* hyperbola construction */
draw((-7.084221324561282,4.063766311689345)--(-1.5566283203280638,-4.163661944457758), linewidth(0.4) + ubqqys);
draw((-7.084221324561282,4.063766311689345)--(-4.371774682264501,-11.526641486115832), linewidth(0.4) + ubqqys);
draw((-4.371774682264501,-11.526641486115832)--(-1.5566283203280638,-4.163661944457758), linewidth(0.4) + ubqqys);
draw((-4.33,-2.19)--(-4.371774682264501,-11.526641486115832), linewidth(0.4) + ubqqys);
draw((-7.103371679671937,-0.2163380555422419)--(-7.084221324561282,4.063766311689345), linewidth(0.4) + ubqqys);
/* dots and labels */
dot((-7.084221324561282,4.063766311689345),dotstyle);
label("$A$", (-6.995207551130457,4.3205286202851205), NE * labelscalefactor);
dot((-8.8,-2.17),dotstyle);
label("$B$", (-8.71011398583068,-1.9086168116406432), NE * labelscalefactor);
dot((0.14,-2.21),dotstyle);
label("$C$", (0.2427063717954904,-1.9590552361906495), NE * labelscalefactor);
dot((-4.33,-2.19),dotstyle);
label("$M$", (-4.221094200880094,-1.9338360239156465), NE * labelscalefactor);
dot((-7.103371679671937,-0.2163380555422419),dotstyle);
label("$H$", (-6.995207551130457,0.033262533534594727), NE * labelscalefactor);
dot((-1.5566283203280638,-4.163661944457758),dotstyle);
label("$A'$", (-1.3208847892547142,-4.607072525065974), NE * labelscalefactor);
dot((-4.371774682264501,-11.526641486115832),dotstyle);
label("$K$", (-4.2715326254301,-11.26494456566679), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/8/a/7/8a78a9690e15a316da0076e1afe15548ec8ad2b7.png)
The Fact that








(Just too much in a Single Post I guess...
