Harmonic Divisions - A Powerful & Rarely Used Tool!
by Potla, Feb 8, 2011, 5:56 PM
Long since I have ever posted anything on my blog, and more importantly, I have not posted anything on geometry before (except for a similarity trivia), and therefore this is my first extensive attempt on geometry.
As the title explains clearly, I want to post some useful results and solve some problems related to Harmonic Divisions, because I have not found a very good book or ebook explaining the concepts clearly.
HARMONIC DIVISIONS
Though all of us know what a harmonic division is, if four points
are collinear and if they satisfy
then the four points
are said to form a harmonic range.
Now let us move onto some theorems.
Theorem 1.
If
is a harmonic range and if
is the midpoint of
then 
Proof.
After componendo and dividendo on
we get
leading to

The converse of this theorem is also obviously true.
![[asy]
dot((0,0));
dot((-5,0));
dot((+5,0));
dot((3,0));
dot((8,0));
draw((-5,0)--(8,0));
label("$A$", (-5,0), S);
label("$O$", (0,0), S);
label("$C$", (3,0), S);
label("$D$", (8,0), S);
label("$B$", (5,0), S);
[/asy]](//latex.artofproblemsolving.com/4/4/2/44296e606a9d3760cba3d9036189d33b10dd1027.png)
Theorem 2.
If
are three concurrent cevians of a triangle
with
lying on
respectively, then
is a harmonic division.
Proof
Using Menelaus we have,

And using Ceva we obtain

Which jointly lead to
ie the division is harmonic.
![[asy]
size(10cm, 8cm);
label("$A$", (0,5), N);
label("$B$", (-1,0), S);
label("$C$", (5,0), S);
label("$X$", (3,0), S);
label("$Z$", (-0.3, 3.48), NW);
label("$Y$", (2.35,2.65), NE);
label("$T$", (10.82,0), S);
draw((0,5)--(-1,0));
draw((-1,0)--(10.82,0));
draw((5,0)--(0,5));
draw((0,5)--(3,0));
draw((-1,0)--(2.35,2.65));
draw((5,0)--(-0.3,3.48));
draw((-0.3,3.48)--(10.82,0));
[/asy]](//latex.artofproblemsolving.com/e/d/7/ed7573debf7b5e394dd75291202c8bdabe5fe90e.png)
Theorem 3.
If four concurrent lines are such that one transversal cuts them harmonically, then every transversal intersects these four lines to form a harmonic division.
Proof
Assume the lines
pass through
and cut by a line
in
respectively. Assume that
is harmonic, and therefore let another transversal cut these at
it is sufficient to check that the four points
form a harmonic division.
Note that using the sine rule we get
and 
Comparing these two and using the fact that
is harmonic, we get 
Now again we can use similar arguments to arrive at
ie
is harmonic.
![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.5) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
draw((-2,0)--(4,0)); draw((2,0)--(10,0)); draw((0,(+12-6*0)/2)--(14.29,(+12-6*14.29)/2)); draw((0,(+24-6*0)/4)--(14.29,(+24-6*14.29)/4)); draw((0,(+60-6*0)/10)--(14.29,(+60-6*14.29)/10)); draw((-2,(+12+6*-2)/2)--(14.29,(+12+6*14.29)/2)); draw((1.33,(+14.29-5.23*1.33)/0.73)--(14.29,(+14.29-5.23*14.29)/0.73));
dot((-2,0),ds); label("$A$", (-2.17,-0.56),S*lsf); dot((4,0),ds); label("$B$", (3.81,-0.47),S*lsf); dot((2,0),ds); label("$C$", (1.67,-0.53),SW*lsf); dot((10,0),ds); label("$D$", (9.83,-0.5),SE*lsf); dot((0,6),ds); label("$O$", (-0.65,6.3),NE*lsf); dot((1.33,9.99),ds); label("$A'$", (1.61,9.93),NE*lsf); dot((2.06,4.76),ds); label("$D'$", (2.2,4.96),NE*lsf); dot((2.39,2.41),ds); label("$B'$", (2.51,2.61),NE*lsf); dot((3.27,-3.8),ds); label("$C'$", (3.53,-3.91),NE*lsf); clip((-5.43,-5.18)--(-5.43,10.64)--(14.29,10.64)--(14.29,-5.18)--cycle);[/asy]](//latex.artofproblemsolving.com/0/8/0/080b9ea965b5a5e9f155182fb068a751ea3ce632.png)
Note: Such four concurrent lines are called to form a harmonic range or a harmonic pencil, denoted as
or sometimes as
Theorem 4.
Any two of the following statements implore the third statement to be true, too.
Statement 1: The pencil
is harmonic.
Statement 2:
bisects
internally.
Statement 3:
and
are perpendicular to each other.
Proof.
I will prove that
and the rest is left for the reader to prove.
Refer to the diagram. Draw
such that
Now,
and 
Using
we get
ie
is the midpoint of 
Now, we already have
Therefore
bisects
but since this is perpendicular to
therefore
is the external bisector of 
![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.5) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); pen wwqqff = rgb(0.4,0,1); pen zzzzff = rgb(0.6,0.6,1); pen ffttqq = rgb(1,0.2,0); pen zzwwff = rgb(0.6,0.4,1); pen ffqqww = rgb(1,0,0.4);
draw((-0.82,8.97)--(0.21,8.15)--(1.03,9.18)--(0,10)--cycle,wwqqff); draw((-12,0)--(-5,0),wwqqff); draw((0,10)--(-12,0),wwqqff); draw((0,10)--(-5,0),wwqqff); draw((-5,0)--(12.63,0),wwqqff); draw((0,10)--(12.63,0),wwqqff); draw((0,10)--(-7.92,0),wwqqff); pair parametricplot0_cus(real t){
return (2.79*cos(t)+0,2.79*sin(t)+10);
}
draw(graph(parametricplot0_cus,-2.2406491565943965,-2.0344439357957027)--(0,10)--cycle,ffttqq+linewidth(0.6pt)); pair parametricplot1_cus(real t){
return (2.79*cos(t)+0,2.79*sin(t)+10);
}
draw(graph(parametricplot1_cus,-2.44685437739309,-2.2406491565943965)--(0,10)--cycle,ffttqq); draw((-7.92,0)--(-13.59,-7.16),zzwwff); draw((3.59,7.16)--(-13.59,-7.16),ffqqww);
dot((-12,0),ds); label("$A$", (-12.25,-0.7),NE*lsf); dot((-5,0),ds); label("$B$", (-5.12,-0.75),NE*lsf); dot((0,10),ds); label("$O$", (-0.09,10.39),NE*lsf); dot((-7.92,0),ds); label("$C$", (-8.15,-0.75),NE*lsf); dot((12.63,0),ds); label("$D$", (12.44,-0.84),NE*lsf); dot((-13.59,-7.16),ds); label("$E$", (-13.09,-7.78),NE*lsf); dot((3.59,7.16),ds); label("$F$", (3.78,7.45),NE*lsf); clip((-15,-8.48)--(-15,15.28)--(14.63,15.28)--(14.63,-8.48)--cycle);[/asy]](//latex.artofproblemsolving.com/2/5/2/2527949a8ee00c02b3f356cb50243aba12962fe2.png)
Theorem 5.
If
and
are harmonic, and if
concur, then the line
is also concurrent with these lines.
Proof.
Let
meet
at some point
We obtain that
is harmonic, implying
is also harmonic. So we get
But also
so that
so that
and
are coincident.

Theorem 6. (NEW)
Let
be a convex quadrilateral. If
then we must have
to form a harmonic division.
Proof.
Let
Then from Theorem 2 in
with cevians
and transversal
we observe that the division
is harmonic.
So the range
is harmonic and using
as a transversal, we see that
We are done.
![[asy]
import graph; size(14cm); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen wwwwff = rgb(0.4,0.4,1); pen ffcccc = rgb(1,0.8,0.8);
draw((0,4)--(-2,0)--(4,0)--(2.02,3.66)--cycle); draw((0,4)--(-2,0),wwwwff); draw((-2,0)--(4,0),wwwwff); draw((4,0)--(2.02,3.66),wwwwff); draw((2.02,3.66)--(0,4),wwwwff); draw((-2,(+8+4*-2)/2)--(6.39,(+8+4*6.39)/2),wwwwff); draw((-2.92,(-14.64+3.66*-2.92)/-1.98)--(4,(-14.64+3.66*4)/-1.98),wwwwff); draw((-2,0)--(2.02,3.66),wwwwff); draw((4,0)--(0,4),wwwwff); draw((0.88,(+4.05-2.9*0.88)/0.26)--(6.39,(+4.05-2.9*6.39)/0.26),wwwwff); draw((-2.92,(-15.29+3.82*-2.92)/-2.95)--(4,(-15.29+3.82*4)/-2.95),wwwwff);
dot((0,4),ds); label("$D$", (-0.23,4.02),W*lsf); dot((-2,0),ds); label("$A$", (-2.17,-0.24),SW*lsf); dot((4,0),ds); label("$B$", (4.02,-0.3),NE*lsf); dot((2.02,3.66),ds); label("$C$", (2.07,3.74),NE*lsf); dot((0.88,5.76),ds); label("$K$", (0.99,5.72),NE*lsf); dot((1.14,2.86),ds); label("$M$", (0.87,2.76),W*lsf); dot((1.05,3.82),ds); label("$Q$", (1.11,3.91),NE*lsf); dot((1.4,0),ds); label("$P$", (1.44,-0.24),SE*lsf); dot((0.36,4.72),ds); label("$R$", (0.3,4.89),N*lsf); clip((-2.92,-1.31)--(-2.92,6.16)--(6.39,6.16)--(6.39,-1.31)--cycle);
[/asy]](//latex.artofproblemsolving.com/f/a/9/fa9e4e30165ba4b64dc3d5eb18e11fad02be7947.png)

Now we have already done some easy theorems which might come in handy here and there, so we need to keep a tab on them. Let's move onto some simple applications.
Note: From now on I might denote
as the cross-ratio and
obviously denotes the case when
is harmonic.
Note 2: I assume the reader to have some knowledge on Poles and Polars, Inversion, Homothety and Cross ratio. So hope I will not be too ambiguous while using these notations and notions.
If
are the altitudes of a triangle
and if
meet
at
respectively, then show that
and
intersect on a point lying on 
Solution
Let
meet
in
then we have to show that
are collinear.
Using Theorem 2, we have that
is harmonic, ie 
Similarly we obtain three other relations, and multiplying them out we get

So that using the converse of Menelaus theorem,
is a transversal to the triangle
and therefore a straight line.
Note: Even if I used directed segments in this proof, I think it is best to avoid using them.
![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.5) + fontsize(10); defaultpen(dp); pen ds = black; pen wwqqff = rgb(0.4,0,1); pen zzttqq = rgb(0.6,0.2,0); pen ffwwww = rgb(1,0.4,0.4); pen qqzzzz = rgb(0,0.6,0.6);
draw((0,8)--(-2,0)--(4,0)--cycle); draw((0,8)--(-2,0),zzttqq); draw((-2,0)--(4,0),zzttqq); draw((4,0)--(0,8),zzttqq); draw((4,0)--(-8,0),wwqqff); draw((-8,0)--(7,-6),wwqqff); draw((0,8)--(7,-6),wwqqff); draw((2.8,2.4)--(-8,0),wwqqff); draw((0,8)--(-2.55,-2.18),wwqqff); draw((0,8)--(0,0),ffwwww); draw((-2,0)--(2.8,2.4),ffwwww); draw((4,0)--(-1.65,1.41),ffwwww); draw((-1.65,1.41)--(7,-6),qqzzzz); draw((2.8,2.4)--(-2.55,-2.18),wwqqff);
dot((-2,0),ds); label("$B$", (-2.56,-0.45),NE*lsf); dot((4,0),ds); label("$C$", (4.44,-0.36),NE*lsf); dot((0,8),ds); label("$A$", (-0.12,8.28),NE*lsf); dot((0,0),ds); label("$D$", (-0.12,-0.52),NE*lsf); dot((2.8,2.4),ds); label("$E$", (2.78,2.66),NE*lsf); dot((-1.65,1.41),ds); label("$F$", (-1.82,1.58),NW*lsf); dot((-2.55,-2.18),ds); label("$F'$", (-2.9,-2.89),NE*lsf); dot((-8,0),ds); label("$D'$", (-8.33,-0.45),S*lsf); dot((7,-6),ds); label("$E'$", (7.22,-6.01),NE*lsf); clip((-9.6,-6.75)--(-9.6,8.99)--(10.03,8.99)--(10.03,-6.75)--cycle);[/asy]](//latex.artofproblemsolving.com/2/7/7/27758bda6b1f5dcb89df92f5c5d5ec80d2dcb2ad.png)
The tangent at a point
of a circle cuts a diametre
at
; and
is the perpendicular to
the line joining
to the midpoint of
cuts
at
Prove that 
Solution
Let us assume
Note that we have, from the similarity of
and
that
So using Theorem 4, we obtain that
is harmonic. So the pencil
is also harmonic, leading to (suing
as a transversal)
is harmonic.
But, this will be harmonic if and only if
But using
we get
but
Therefore
and 
![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen wwqqff = rgb(0.4,0,1); pen ffwwww = rgb(1,0.4,0.4); pen wwwwff = rgb(0.4,0.4,1); pen qqzzzz = rgb(0,0.6,0.6);
draw(circle((0,0),3),ffwwww); draw((-3,0)--(1.82,-3.68),wwwwff); draw((-3,0)--(4.93,0),wwwwff); draw((1.82,2.38)--(1.82,-3.68),qqzzzz); draw((1.82,2.38)--(4.93,0),wwwwff); draw((3.38,1.19)--(1.82,-3.68),wwwwff); draw((1.82,2.38)--(-3,0),wwwwff); draw((3,0)--(1.82,2.38),wwwwff);
dot((0,0),ds); label("$O$", (-0.06,-0.3),NE*lsf); dot((1.82,2.38),ds); label("$P$", (1.88,2.47),NE*lsf); dot((-3,0),ds); label("$A$", (-3.2,-0.25),W*lsf); dot((3,0),ds); label("$B$", (3.03,-0.25),NE*lsf); dot((4.93,0),ds); label("$T$", (4.84,-0.3),NE*lsf); dot((1.82,0),ds); label("$N$", (1.86,-0.28),NE*lsf); dot((3.38,1.19),ds); label("$M$", (3.49,1.18),NE*lsf); dot((1.82,-3.68),ds); label("$Q$", (1.91,-3.76),NE*lsf); clip((-3.91,-4.09)--(-3.91,3.75)--(5.87,3.75)--(5.87,-4.09)--cycle);
[/asy]](//latex.artofproblemsolving.com/1/0/c/10c30de43c867e2172956bc4891c9344dff13aaf.png)
Let
be a right angled triangle at
.
is a point on
. Let
be the midpoint of
.
intersects the perpendicular bisector of
at
. Prove that
.
Solution
Let
We will show that if
is a point on
extended such that
Then we must have
is the perpendicular from
onto 
Now let
and
meet at
then; since
is the midpoint of
it is forced that
is harmonic.
Now this also implies that
is a harmonic range, so that using
as a transversal to this range it is implored that
are harmonic.
Now since
we must have
Therefore using
we have
and therefore 
Hence
is the midpoint of 
![[asy]
import graph; size(10cm);
draw((0,0)--(4,0));
draw((4,0)--(0,5));
draw((0,0)--(0,5));
draw((0,5)--(2,-2.51));
draw((0,0)--(2,2.5));
draw((0,0)--(2,-2.51));
draw((4,0)--(2,-2.51));
draw((2,0)--(2,-2.51));
label("$A$", (0,0), W);
label("$B$", (4,0), S);
label("$C$", (0,5), N);
label("$D$", (2,2.25), NE);
label("$E$", (2,-2.51), E);
label("$M$", (1,1.25), W);
label("$L$", (2,0), N);
[/asy]](//latex.artofproblemsolving.com/9/8/7/987726bead621b87848e94aaec0f14e99cc53e5a.png)
In acute triangle
we have points
and
on sides
respectively satisfying
Let the angle bisector of
meet
at
and
are projections of
and
to
respectively, and
is the midpoint of
If the incenter of
lies on the circumcircle of
prove that
and the incenter of
are collinear.
Solution(motal)
Let
,
the incenter of
and
the incenter of
.
so, considering
with transversal
, the problem is equivalent to proving that
. Easy angle chasing leads to
isosceles. Furthermore,
concyclic. With similar argument we obtain
concyclic.
. Therefore we have that
is concyclic with diameter
. In particular we have that both of these facts hold:
and
is bisector of
. Hence considering pencil
we can conclude that
.
We are done.
Sorry I could not attach a figure, I will attach one as soon as possible.
(Desargues) Let
and
be perspective triangles perspective about a point
If
and
then
are collinear.
Solution
Let us denote
Now we will use a little of cross ratio or projective geometry to prove this fact.
Firstly consider the concurrent points
and
The corresponding lines
are concurrent at
Therefore using a simple idea of cross-ratio we obtain that
It is also obvious that
and
So the points
are collinear since
lies on the line
(Why?)
We are done.

Given that
is a diameter of a circle and the lines
are tangents to the circle, prove that
where
is the foot of perpendicular from
onto
and 
Solution
Let
and 
Since
and
we see that
therefore
bisects
and also
So the range
is harmonic. Using
as a transversal this leads to the fact that
are harmonic. So
is harmonic, and again, using
as a transversal to this range we have that
ie
is the midpoint of 
These types of midpoint considerations can prove a lot of geometric problems easily, and of course this one is obvious from considering symmedians. Apart from that, harmonic divisions stands out to be a hugely useful and rarely used (in my country, at least) method.
(Proposed in Olympiad Marathon by Fersolve)
Let
be the intersection of the diagonals of convex quadrilateral
The circumcircles
of
and
meet at
and
Line
meets the circumcircles of
and
at
and
respectively. Prove that
is the midpoint of
(NEW)
![[asy]import graph; size(14cm); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqttff = rgb(0,0.2,1); pen ffcccc = rgb(1,0.8,0.8); pen fftttt = rgb(1,0.2,0.2);
draw((0,5)--(-2,0)--(6,0)--(2.31,6.49)--cycle); draw((0,5)--(-2,0),qqttff); draw((-2,0)--(6,0),qqttff); draw((6,0)--(2.31,6.49),qqttff); draw((2.31,6.49)--(0,5),qqttff); draw((-2,0)--(2.31,6.49),qqttff); draw((0,5)--(6,0),qqttff); draw(circle((-1.27,2.61),2.71),fftttt); draw(circle((4.51,3.45),3.76),fftttt); draw((-5.22,(-3.97+2.69*-5.22)/-0.39)--(10.02,(-3.97+2.69*10.02)/-0.39),qqttff); draw(circle((1.24,5.62),1.38),fftttt); draw(circle((2,0.44),4.02),fftttt);
dot((0,5),ds); label("$D$", (-0.43,5.18),NW*lsf); dot((-2,0),ds); label("$A$", (-2.34,-0.36),W*lsf); dot((6,0),ds); label("$B$", (6.14,-0.36),NE*lsf); dot((2.31,6.49),ds); label("$C$", (2.4,6.64),NE*lsf); dot((0.85,4.29),ds); label("$O$", (1.18,4.03),NE*lsf); dot((1.24,1.6),ds); label("$M$", (1.37,1.61),NE*lsf); dot((0.49,6.78),ds); label("$T$", (0.56,7.02),NE*lsf); dot((1.99,-3.59),ds); label("$S$", (2.09,-3.45),NE*lsf); clip((-5.22,-4.1)--(-5.22,8.12)--(10.02,8.12)--(10.02,-4.1)--cycle);[/asy]](//latex.artofproblemsolving.com/9/9/e/99e9c6a3f10bfb2c134810ead879301d0a283807.png)
Solution
Let us invert everything about
to map points to their primes. By Theorem 6 on the four collinear points
we have
Also we have the following relations:
And therefore we obtain
and so,
is the midpoint of
as required.
I will keep updating this post from time to time because as time goes on, the number of problems you come across also goes on.
I will add some exercises about a month later (after my secondary exams end), so, till then; Rejoice!!
References
[1] Cosmin Pohoata; Harmonic Divisions; 2007 Mathematical Reflections
[2] C. Stanley Ogilvy; (1990) Excursions in Geometry, Dover.
[3] Application 1
[4] Application 2

Last Updated On: 7:00 pm UCT; 03 March, 2011.
As the title explains clearly, I want to post some useful results and solve some problems related to Harmonic Divisions, because I have not found a very good book or ebook explaining the concepts clearly.

HARMONIC DIVISIONS
Though all of us know what a harmonic division is, if four points



Now let us move onto some theorems.
Theorem 1.
If




Proof.
After componendo and dividendo on



The converse of this theorem is also obviously true.
![[asy]
dot((0,0));
dot((-5,0));
dot((+5,0));
dot((3,0));
dot((8,0));
draw((-5,0)--(8,0));
label("$A$", (-5,0), S);
label("$O$", (0,0), S);
label("$C$", (3,0), S);
label("$D$", (8,0), S);
label("$B$", (5,0), S);
[/asy]](http://latex.artofproblemsolving.com/4/4/2/44296e606a9d3760cba3d9036189d33b10dd1027.png)
Theorem 2.
If





Proof
Using Menelaus we have,

And using Ceva we obtain

Which jointly lead to

![[asy]
size(10cm, 8cm);
label("$A$", (0,5), N);
label("$B$", (-1,0), S);
label("$C$", (5,0), S);
label("$X$", (3,0), S);
label("$Z$", (-0.3, 3.48), NW);
label("$Y$", (2.35,2.65), NE);
label("$T$", (10.82,0), S);
draw((0,5)--(-1,0));
draw((-1,0)--(10.82,0));
draw((5,0)--(0,5));
draw((0,5)--(3,0));
draw((-1,0)--(2.35,2.65));
draw((5,0)--(-0.3,3.48));
draw((-0.3,3.48)--(10.82,0));
[/asy]](http://latex.artofproblemsolving.com/e/d/7/ed7573debf7b5e394dd75291202c8bdabe5fe90e.png)
Theorem 3.
If four concurrent lines are such that one transversal cuts them harmonically, then every transversal intersects these four lines to form a harmonic division.
Proof
Assume the lines







Note that using the sine rule we get


Comparing these two and using the fact that


Now again we can use similar arguments to arrive at


![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.5) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
draw((-2,0)--(4,0)); draw((2,0)--(10,0)); draw((0,(+12-6*0)/2)--(14.29,(+12-6*14.29)/2)); draw((0,(+24-6*0)/4)--(14.29,(+24-6*14.29)/4)); draw((0,(+60-6*0)/10)--(14.29,(+60-6*14.29)/10)); draw((-2,(+12+6*-2)/2)--(14.29,(+12+6*14.29)/2)); draw((1.33,(+14.29-5.23*1.33)/0.73)--(14.29,(+14.29-5.23*14.29)/0.73));
dot((-2,0),ds); label("$A$", (-2.17,-0.56),S*lsf); dot((4,0),ds); label("$B$", (3.81,-0.47),S*lsf); dot((2,0),ds); label("$C$", (1.67,-0.53),SW*lsf); dot((10,0),ds); label("$D$", (9.83,-0.5),SE*lsf); dot((0,6),ds); label("$O$", (-0.65,6.3),NE*lsf); dot((1.33,9.99),ds); label("$A'$", (1.61,9.93),NE*lsf); dot((2.06,4.76),ds); label("$D'$", (2.2,4.96),NE*lsf); dot((2.39,2.41),ds); label("$B'$", (2.51,2.61),NE*lsf); dot((3.27,-3.8),ds); label("$C'$", (3.53,-3.91),NE*lsf); clip((-5.43,-5.18)--(-5.43,10.64)--(14.29,10.64)--(14.29,-5.18)--cycle);[/asy]](http://latex.artofproblemsolving.com/0/8/0/080b9ea965b5a5e9f155182fb068a751ea3ce632.png)
Note: Such four concurrent lines are called to form a harmonic range or a harmonic pencil, denoted as


Theorem 4.
Any two of the following statements implore the third statement to be true, too.
Statement 1: The pencil

Statement 2:


Statement 3:


Proof.
I will prove that

Refer to the diagram. Draw




Using




Now, we already have






![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.5) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); pen wwqqff = rgb(0.4,0,1); pen zzzzff = rgb(0.6,0.6,1); pen ffttqq = rgb(1,0.2,0); pen zzwwff = rgb(0.6,0.4,1); pen ffqqww = rgb(1,0,0.4);
draw((-0.82,8.97)--(0.21,8.15)--(1.03,9.18)--(0,10)--cycle,wwqqff); draw((-12,0)--(-5,0),wwqqff); draw((0,10)--(-12,0),wwqqff); draw((0,10)--(-5,0),wwqqff); draw((-5,0)--(12.63,0),wwqqff); draw((0,10)--(12.63,0),wwqqff); draw((0,10)--(-7.92,0),wwqqff); pair parametricplot0_cus(real t){
return (2.79*cos(t)+0,2.79*sin(t)+10);
}
draw(graph(parametricplot0_cus,-2.2406491565943965,-2.0344439357957027)--(0,10)--cycle,ffttqq+linewidth(0.6pt)); pair parametricplot1_cus(real t){
return (2.79*cos(t)+0,2.79*sin(t)+10);
}
draw(graph(parametricplot1_cus,-2.44685437739309,-2.2406491565943965)--(0,10)--cycle,ffttqq); draw((-7.92,0)--(-13.59,-7.16),zzwwff); draw((3.59,7.16)--(-13.59,-7.16),ffqqww);
dot((-12,0),ds); label("$A$", (-12.25,-0.7),NE*lsf); dot((-5,0),ds); label("$B$", (-5.12,-0.75),NE*lsf); dot((0,10),ds); label("$O$", (-0.09,10.39),NE*lsf); dot((-7.92,0),ds); label("$C$", (-8.15,-0.75),NE*lsf); dot((12.63,0),ds); label("$D$", (12.44,-0.84),NE*lsf); dot((-13.59,-7.16),ds); label("$E$", (-13.09,-7.78),NE*lsf); dot((3.59,7.16),ds); label("$F$", (3.78,7.45),NE*lsf); clip((-15,-8.48)--(-15,15.28)--(14.63,15.28)--(14.63,-8.48)--cycle);[/asy]](http://latex.artofproblemsolving.com/2/5/2/2527949a8ee00c02b3f356cb50243aba12962fe2.png)
Theorem 5.
If




Proof.
Let











Theorem 6. (NEW)
Let



Proof.
Let





So the range



![[asy]
import graph; size(14cm); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen wwwwff = rgb(0.4,0.4,1); pen ffcccc = rgb(1,0.8,0.8);
draw((0,4)--(-2,0)--(4,0)--(2.02,3.66)--cycle); draw((0,4)--(-2,0),wwwwff); draw((-2,0)--(4,0),wwwwff); draw((4,0)--(2.02,3.66),wwwwff); draw((2.02,3.66)--(0,4),wwwwff); draw((-2,(+8+4*-2)/2)--(6.39,(+8+4*6.39)/2),wwwwff); draw((-2.92,(-14.64+3.66*-2.92)/-1.98)--(4,(-14.64+3.66*4)/-1.98),wwwwff); draw((-2,0)--(2.02,3.66),wwwwff); draw((4,0)--(0,4),wwwwff); draw((0.88,(+4.05-2.9*0.88)/0.26)--(6.39,(+4.05-2.9*6.39)/0.26),wwwwff); draw((-2.92,(-15.29+3.82*-2.92)/-2.95)--(4,(-15.29+3.82*4)/-2.95),wwwwff);
dot((0,4),ds); label("$D$", (-0.23,4.02),W*lsf); dot((-2,0),ds); label("$A$", (-2.17,-0.24),SW*lsf); dot((4,0),ds); label("$B$", (4.02,-0.3),NE*lsf); dot((2.02,3.66),ds); label("$C$", (2.07,3.74),NE*lsf); dot((0.88,5.76),ds); label("$K$", (0.99,5.72),NE*lsf); dot((1.14,2.86),ds); label("$M$", (0.87,2.76),W*lsf); dot((1.05,3.82),ds); label("$Q$", (1.11,3.91),NE*lsf); dot((1.4,0),ds); label("$P$", (1.44,-0.24),SE*lsf); dot((0.36,4.72),ds); label("$R$", (0.3,4.89),N*lsf); clip((-2.92,-1.31)--(-2.92,6.16)--(6.39,6.16)--(6.39,-1.31)--cycle);
[/asy]](http://latex.artofproblemsolving.com/f/a/9/fa9e4e30165ba4b64dc3d5eb18e11fad02be7947.png)

Now we have already done some easy theorems which might come in handy here and there, so we need to keep a tab on them. Let's move onto some simple applications.
Note: From now on I might denote



Note 2: I assume the reader to have some knowledge on Poles and Polars, Inversion, Homothety and Cross ratio. So hope I will not be too ambiguous while using these notations and notions.










Solution
Let




Using Theorem 2, we have that


Similarly we obtain three other relations, and multiplying them out we get

So that using the converse of Menelaus theorem,


Note: Even if I used directed segments in this proof, I think it is best to avoid using them.
![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.5) + fontsize(10); defaultpen(dp); pen ds = black; pen wwqqff = rgb(0.4,0,1); pen zzttqq = rgb(0.6,0.2,0); pen ffwwww = rgb(1,0.4,0.4); pen qqzzzz = rgb(0,0.6,0.6);
draw((0,8)--(-2,0)--(4,0)--cycle); draw((0,8)--(-2,0),zzttqq); draw((-2,0)--(4,0),zzttqq); draw((4,0)--(0,8),zzttqq); draw((4,0)--(-8,0),wwqqff); draw((-8,0)--(7,-6),wwqqff); draw((0,8)--(7,-6),wwqqff); draw((2.8,2.4)--(-8,0),wwqqff); draw((0,8)--(-2.55,-2.18),wwqqff); draw((0,8)--(0,0),ffwwww); draw((-2,0)--(2.8,2.4),ffwwww); draw((4,0)--(-1.65,1.41),ffwwww); draw((-1.65,1.41)--(7,-6),qqzzzz); draw((2.8,2.4)--(-2.55,-2.18),wwqqff);
dot((-2,0),ds); label("$B$", (-2.56,-0.45),NE*lsf); dot((4,0),ds); label("$C$", (4.44,-0.36),NE*lsf); dot((0,8),ds); label("$A$", (-0.12,8.28),NE*lsf); dot((0,0),ds); label("$D$", (-0.12,-0.52),NE*lsf); dot((2.8,2.4),ds); label("$E$", (2.78,2.66),NE*lsf); dot((-1.65,1.41),ds); label("$F$", (-1.82,1.58),NW*lsf); dot((-2.55,-2.18),ds); label("$F'$", (-2.9,-2.89),NE*lsf); dot((-8,0),ds); label("$D'$", (-8.33,-0.45),S*lsf); dot((7,-6),ds); label("$E'$", (7.22,-6.01),NE*lsf); clip((-9.6,-6.75)--(-9.6,8.99)--(10.03,8.99)--(10.03,-6.75)--cycle);[/asy]](http://latex.artofproblemsolving.com/2/7/7/27758bda6b1f5dcb89df92f5c5d5ec80d2dcb2ad.png)











Solution
Let us assume








But, this will be harmonic if and only if






![[asy]
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen wwqqff = rgb(0.4,0,1); pen ffwwww = rgb(1,0.4,0.4); pen wwwwff = rgb(0.4,0.4,1); pen qqzzzz = rgb(0,0.6,0.6);
draw(circle((0,0),3),ffwwww); draw((-3,0)--(1.82,-3.68),wwwwff); draw((-3,0)--(4.93,0),wwwwff); draw((1.82,2.38)--(1.82,-3.68),qqzzzz); draw((1.82,2.38)--(4.93,0),wwwwff); draw((3.38,1.19)--(1.82,-3.68),wwwwff); draw((1.82,2.38)--(-3,0),wwwwff); draw((3,0)--(1.82,2.38),wwwwff);
dot((0,0),ds); label("$O$", (-0.06,-0.3),NE*lsf); dot((1.82,2.38),ds); label("$P$", (1.88,2.47),NE*lsf); dot((-3,0),ds); label("$A$", (-3.2,-0.25),W*lsf); dot((3,0),ds); label("$B$", (3.03,-0.25),NE*lsf); dot((4.93,0),ds); label("$T$", (4.84,-0.3),NE*lsf); dot((1.82,0),ds); label("$N$", (1.86,-0.28),NE*lsf); dot((3.38,1.19),ds); label("$M$", (3.49,1.18),NE*lsf); dot((1.82,-3.68),ds); label("$Q$", (1.91,-3.76),NE*lsf); clip((-3.91,-4.09)--(-3.91,3.75)--(5.87,3.75)--(5.87,-4.09)--cycle);
[/asy]](http://latex.artofproblemsolving.com/1/0/c/10c30de43c867e2172956bc4891c9344dff13aaf.png)











Solution
Let







Now let






Now this also implies that



Now since





Hence


![[asy]
import graph; size(10cm);
draw((0,0)--(4,0));
draw((4,0)--(0,5));
draw((0,0)--(0,5));
draw((0,5)--(2,-2.51));
draw((0,0)--(2,2.5));
draw((0,0)--(2,-2.51));
draw((4,0)--(2,-2.51));
draw((2,0)--(2,-2.51));
label("$A$", (0,0), W);
label("$B$", (4,0), S);
label("$C$", (0,5), N);
label("$D$", (2,2.25), NE);
label("$E$", (2,-2.51), E);
label("$M$", (1,1.25), W);
label("$L$", (2,0), N);
[/asy]](http://latex.artofproblemsolving.com/9/8/7/987726bead621b87848e94aaec0f14e99cc53e5a.png)



















Solution(motal)
Let




















We are done.

Sorry I could not attach a figure, I will attach one as soon as possible.







Solution
Let us denote

Firstly consider the concurrent points










We are done.










Solution
Let


Since














These types of midpoint considerations can prove a lot of geometric problems easily, and of course this one is obvious from considering symmedians. Apart from that, harmonic divisions stands out to be a hugely useful and rarely used (in my country, at least) method.

Let


of











![[asy]import graph; size(14cm); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqttff = rgb(0,0.2,1); pen ffcccc = rgb(1,0.8,0.8); pen fftttt = rgb(1,0.2,0.2);
draw((0,5)--(-2,0)--(6,0)--(2.31,6.49)--cycle); draw((0,5)--(-2,0),qqttff); draw((-2,0)--(6,0),qqttff); draw((6,0)--(2.31,6.49),qqttff); draw((2.31,6.49)--(0,5),qqttff); draw((-2,0)--(2.31,6.49),qqttff); draw((0,5)--(6,0),qqttff); draw(circle((-1.27,2.61),2.71),fftttt); draw(circle((4.51,3.45),3.76),fftttt); draw((-5.22,(-3.97+2.69*-5.22)/-0.39)--(10.02,(-3.97+2.69*10.02)/-0.39),qqttff); draw(circle((1.24,5.62),1.38),fftttt); draw(circle((2,0.44),4.02),fftttt);
dot((0,5),ds); label("$D$", (-0.43,5.18),NW*lsf); dot((-2,0),ds); label("$A$", (-2.34,-0.36),W*lsf); dot((6,0),ds); label("$B$", (6.14,-0.36),NE*lsf); dot((2.31,6.49),ds); label("$C$", (2.4,6.64),NE*lsf); dot((0.85,4.29),ds); label("$O$", (1.18,4.03),NE*lsf); dot((1.24,1.6),ds); label("$M$", (1.37,1.61),NE*lsf); dot((0.49,6.78),ds); label("$T$", (0.56,7.02),NE*lsf); dot((1.99,-3.59),ds); label("$S$", (2.09,-3.45),NE*lsf); clip((-5.22,-4.1)--(-5.22,8.12)--(10.02,8.12)--(10.02,-4.1)--cycle);[/asy]](http://latex.artofproblemsolving.com/9/9/e/99e9c6a3f10bfb2c134810ead879301d0a283807.png)
Solution
Let us invert everything about



![\[M'T'=\dfrac{MT\times r^2}{OM\cdot OT}, T'O=\dfrac{r^2}{OT}, M'S'=\dfrac{MS\times r^2}{OM\cdot OS}, S'O=\dfrac{r^2}{OS};\]](http://latex.artofproblemsolving.com/8/7/0/8704bf25a5f0a05a05e4d04667a87d42cf53a294.png)




I will keep updating this post from time to time because as time goes on, the number of problems you come across also goes on.
I will add some exercises about a month later (after my secondary exams end), so, till then; Rejoice!!
References
[1] Cosmin Pohoata; Harmonic Divisions; 2007 Mathematical Reflections
[2] C. Stanley Ogilvy; (1990) Excursions in Geometry, Dover.
[3] Application 1
[4] Application 2

Last Updated On: 7:00 pm UCT; 03 March, 2011.
This post has been edited 6 times. Last edited by levans, Jan 15, 2016, 3:57 AM