Yay for inequality

by shiningsunnyday, Apr 14, 2017, 9:10 AM

2013 USAMO 4 wrote:
Find all real numbers $x,y,z\geq 1$ satisfying \[\min(\sqrt{x+xyz},\sqrt{y+xyz},\sqrt{z+xyz})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}.\]

Solution

Tidbit

Slick combinatorial-ish argument

by shiningsunnyday, Apr 10, 2017, 6:08 PM

1995 USAMO P1 wrote:
Let $\, p \,$ be an odd prime. The sequence $(a_n)_{n \geq 0}$ is defined as follows: $\, a_0 = 0,$ $a_1 = 1, \, \ldots, \, a_{p-2} = p-2 \,$ and, for all $\, n \geq p-1, \,$ $\, a_n \,$ is the least positive integer that does not form an arithmetic sequence of length $\, p \,$ with any of the preceding terms. Prove that, for all $\, n, \,$ $\, a_n \,$ is the number obtained by writing $\, n \,$ in base $\, p-1 \,$ and reading the result in base $\, p$.

Solution

Silly geo

by shiningsunnyday, Apr 10, 2017, 2:01 PM

2013 USAMO P1 wrote:
In triangle $ABC$, points $P$, $Q$, $R$ lie on sides $BC$, $CA$, $AB$ respectively. Let $\omega_A$, $\omega_B$, $\omega_C$ denote the circumcircles of triangles $AQR$, $BRP$, $CPQ$, respectively. Given the fact that segment $AP$ intersects $\omega_A$, $\omega_B$, $\omega_C$ again at $X$, $Y$, $Z$, respectively, prove that $YX/XZ=BP/PC$.

Solution

Tidbit

To share with readers my favorite problem I came across today :) (Shout for contrib.)

avatar

shiningsunnyday
Archives
- May 2017
Shouts
Submit
  • this guy is an absolute legend. much love wherever you are Michael

    by LeonidasTheConquerer, Aug 5, 2024, 9:37 PM

  • amazing blog

    by anurag27826, Jun 17, 2023, 7:20 AM

  • hi i randomly found this

    by purplepenguin2, Mar 1, 2023, 8:43 AM

  • can i be a contributor please?

    by cinnamon_e, Mar 10, 2022, 6:58 PM

  • orzorzorzorzorzorozo

    by samrocksnature, Jul 16, 2021, 8:25 PM

  • 2021 post

    by the_mathmagician, May 5, 2021, 3:28 PM

  • Let $ ABC$ be an equilateral triangle of side length $ 1$. Let $ D$ be the point such that $ C$ is the midpoint of $ BD$, and let $ I$ be the incenter of triangle $ ACD$. Let $ E$ be the point on line $ AB$ such that $ DE$ and $ BI$ are perpendicular. $ \

    by ARay10, Aug 25, 2020, 5:55 PM

  • Nice blog! :)

    by User526797, Jan 12, 2020, 4:48 PM

  • oh my gosh it's been so longggggg.... contrib? what does that mean?

    by adiarasel, Dec 1, 2019, 8:31 PM

  • 2019 post

    by piphi, Aug 10, 2019, 6:32 AM

  • hi contrib please

    by Emathmaster, Dec 27, 2018, 5:38 PM

  • hihihihihi contrib plzzzzz

    by haha0201, Aug 20, 2018, 3:58 PM

  • contrib please

    by Max0815, Aug 1, 2018, 12:35 AM

  • contrib /charmander

    by mathmaster2000, Apr 16, 2017, 4:59 PM

  • for contrib

    by SomethingNeutral, Mar 30, 2017, 7:57 PM

270 shouts
Tags
About Owner
  • Posts: 1350
  • Joined: Dec 19, 2014
Blog Stats
  • Blog created: Jun 11, 2016
  • Total entries: 193
  • Total visits: 30959
  • Total comments: 579
Search Blog
a