Mathematically Absurd
by SomeonecoolLovesMaths, Jan 3, 2025, 6:52 PM
Prove that for any positive integers
,
![\[ \prod_{1 \leq i < j \leq n} \frac{a_i-a_j}{i-j} \in \mathbb{Z} .\]](//latex.artofproblemsolving.com/4/3/0/4302b6638b7ebd13c28130e7a969c6284f4ad531.png)
Proof:
We shall show that for any prime
The divisibility immediately follows. Indeed, the problem statement is equivalent to showing that the quantity
is minimised when
for all
. To prove this we find some reasonable way of computing the above quantity.
Denote
. Then
We proceed by computing the size of each individual set
. I claim the cardinality of this set is minimised when
for all
. Indeed, let
for
. We remark that the union of
partitions the set
because modular congruence is an equivalence relation. Moreover,
if and only if
for some
. Thus
I claim that the above sum is minimised if there exists an integer
such that
for all
. (Note that this is very close to Jensen's Inequality.) Suppose for the sake of contradiction that the function
has minimal value at
that does not satisfy the above claim. Then there exists
such that
.
Rearrange to
and rewrite as
Then
Finally, if we assume without loss of generality that
we conclude
contradicting the minimality of
.
Because
is partitioned by the
, we have that
We may say that
has remainder
upon Euclidean division by
. Then from our above work it follows that,
It remains to show that this value is taken when
. For that case, we define
and
. It's fairly easy to see that
Then
when
. Thus
.
completing the proof.
Thanks to HKIS200543

![\[ \prod_{1 \leq i < j \leq n} \frac{a_i-a_j}{i-j} \in \mathbb{Z} .\]](http://latex.artofproblemsolving.com/4/3/0/4302b6638b7ebd13c28130e7a969c6284f4ad531.png)
Proof:
We shall show that for any prime

![\[ v_p \left( \prod_{1 \leq i < j \leq n} (a_i-a_j) \right) \geq v_p \left( \prod_{1 \leq i < j \leq n} (i-j) \right). \]](http://latex.artofproblemsolving.com/3/b/5/3b5f9deb6b391a9640fe8b64eeedc99d5461365f.png)
![\[ v_p \left( \prod_{1 \leq i < j \leq n} (a_i-a_j) \right) \]](http://latex.artofproblemsolving.com/4/d/d/4dd9b4d8d8e1c2a25d85f65cbcf7ae6c93494baf.png)


Denote

![\[ v_p \left( \prod_{1 \leq i < j \leq n} (a_i-a_j) \right) = \sum_{1 \leq i < j \leq n} v_p \left( a_i-a_j \right) = \sum_{k \geq 1} |A_{p^k}| .\]](http://latex.artofproblemsolving.com/a/b/0/ab0f0f9cb159fd1e74f090806a247af3a3618832.png)



![\[ A_{(p^k, x)} = \left\{ a_i \mid a_i \equiv x \pmod{p^k} \right\} \]](http://latex.artofproblemsolving.com/4/4/d/44d0b55326b872421bba03c8d6a3cfbd6cd01cf4.png)






![\[ |A_{p^k}| = \sum_{x=0}^{p^k-1} \binom{|A_{(p^k,x)}|}{2} .\]](http://latex.artofproblemsolving.com/4/2/b/42bef1bec3b07afbf989781b632bb981634d5aae.png)



![\[ f(a_0, a_1, \dots, a_{p^k-1} )=\sum_{x=0}^{p^k-1} \binom{a_x}{2} \]](http://latex.artofproblemsolving.com/e/9/2/e92723c09356b1b4e16b7b31c9aa665c403a053f.png)



Rearrange to


![\[ \binom{a_i-1}{2} + \binom{a_j+1}{2} < \binom{a_i}{2}+\binom{a_j}{2} .\]](http://latex.artofproblemsolving.com/c/a/4/ca43f8e5daed4c375e4074f6bb83a70fa9c3236e.png)

![\[ f(a_0, a_1, \dots ,a_{p^k-1} ) > f(a_0, a_1, \dots , a_i-1, \dots, a_j+1, \dots, a_{p^k-1} ) \]](http://latex.artofproblemsolving.com/0/b/b/0bb27c918147a6c68f5a678dc2aa55a2f79bde46.png)

Because


![\[ |A_{(p^k,0)}|+|A_{(p^k,1)}|+\dots+|A_{(p^k,p^k-1)}|=n . \]](http://latex.artofproblemsolving.com/6/e/5/6e53d1469796e1ef9f30a2605911e2780d22681c.png)



![\[ |A_{p^k}|=f \left( | A_{(p^k,0)}|, |A_{(p^k,1)}|, \dots, |A_{(p^k,p^k-1)}|\right) \geq r\binom{\left\lfloor \frac{n}{p^k}\right\rfloor +1 }{2} + (p^k-r)\binom{\left\lfloor \frac{n}{p^k}\right\rfloor}{2}. \]](http://latex.artofproblemsolving.com/9/e/a/9ead7efbb8cdeb6060c191544c535d9ba4b1f334.png)



![\[ |A_{(p^k,x)}|= \space
\begin{cases}\left\lfloor \frac{n}{p^k}\right\rfloor +1 &\text{ if } 0 \leq x \leq r \\
\left\lfloor \frac{n}{p^k}\right\rfloor & \text{ if } r < x \leq p^k-1.
\end{cases} \]](http://latex.artofproblemsolving.com/f/c/c/fcc79b5842c90c1046bc8cc68124c8d6e002c7ed.png)
![\[ |A_{p^k}^{\star}|=f \left( | A_{(p^k,0)}^{\star}|, |A_{(p^k,1)}^{\star}|, \dots, |A_{(p^k,p^k-1)}^{\star}|\right) = \sum_{x=0}^{p^k-1} \binom{|A_{(p^k,x)}^{\star}|}{2} = r\binom{\left\lfloor \frac{n}{p^k}\right\rfloor +1 }{2} + (p^k-r)\binom{\left\lfloor \frac{n}{p^k}\right\rfloor}{2} \]](http://latex.artofproblemsolving.com/7/8/1/78194a51e45e422000a8a9bc5a335c348490b39a.png)


![\[ v_p \left( \prod_{1 \leq i < j \leq n} (i-j) \right) = \sum_{1 \leq i < j \leq n} v_p \left( i-j \right) = \sum_{k \geq 1} |A^{\star}_{p^k}|. \leq \sum_{k \geq 1} |A_{p^k}|= v_p \left( \prod_{1 \leq i < j \leq n} (a_i-a_j) \right) ,\]](http://latex.artofproblemsolving.com/c/1/1/c11b062e0185af7cfb058d01beb910f3caf84c0e.png)
Thanks to HKIS200543