Every Inequality you will need! (Might contain mistakes)

by SomeonecoolLovesMaths, Feb 21, 2025, 1:49 PM

$$\text{Useful Inequalities} $$
$$\text{\textbf{Cauchy–Schwarz}}$$$$
\left(\sum_{i=1}^n x_i y_i\right)^2 \le \left(\sum_{i=1}^n x_i^2\right)
\left(\sum_{i=1}^n y_i^2\right).
$$
$$\text{\textbf{Minkowski for }} p\ge 1 $$$$
\left(\sum_{i=1}^n |x_i+y_i|^p\right)^{\frac{1}{p}} \le
\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} +
\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}.
$$
$$\text{\textbf{Hölder for }} p,q>1,\; \frac{1}{p}+\frac{1}{q}=1$$$$
\sum_{i=1}^n |x_i y_i| \le
\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}
\left(\sum_{i=1}^n |y_i|^q\right)^{\frac{1}{q}}.
$$
$$\text{\textbf{Bernoulli}}$$$$
(1+x)^r \ge 1+rx,\quad x\ge -1,\; r\in\mathbb{R}\setminus(0,1).
$$$$
\text{(Reverse for } r\in[0,1]\text{)}
$$
$$
(1+x)^r \le \frac{1}{1-rx},\quad x\in\left[-1,\frac{1}{r}\right),\; r\ge 0.
$$
$$
(1+x)^r \le 1 + \left(\frac{x}{x+1}\right)^r,\quad x\ge 0.
$$
$$
(1+x)^r \le 1 + (2r-1)x,\quad x\in[0,1],\; r\in\mathbb{R}\setminus(0,1).
$$
$$
(1+nx)^{n+1} \ge \Bigl(1+(n+1)x\Bigr)^n,\quad x\ge 0,\; n\in\mathbb{N}.
$$
$$
(a+b)^n \le a^n + nb\,(a+b)^{n-1},\quad a,b\ge 0,\; n\in\mathbb{N}.
$$
$$\text{\textbf{Exponential Approximation}}$$$$
e^x \ge \left(1+\frac{x}{n}\right)^n \ge 1+x.
$$
$$
\left(1+\frac{x}{n}\right)^n \ge e^x\left(1-\frac{x^2}{n}\right),\quad n\ge 1,\; |x|\le n.
$$
$$
\frac{x^n}{n!}+1 \le e^x \le \left(1+\frac{x}{n}\right)^{n+\frac{x}{2}},\quad x,n>0.
$$$$
e^x \ge \left(e^{\frac{x}{n}}\right)^n,\quad x,n>0.
$$$$\text{\textbf{Algebraic and Exponential Inequalities}}$$$$
xy + yx > 1, \quad xy > \frac{x}{x+y}, \quad e^x > \left(1+\frac{x}{y}\right)^y > e^{\frac{xy}{x+y}}, \quad x^y \ge e^{\frac{x-y}{x}}, \quad x,y>0.
$$$$
\frac{1}{2-x} < x^x < x^2 - x + 1, \quad e^{2x} \le 1+x^{1-x}, \quad x\in (0,1).
$$$$
x^{\frac{1}{r}}(x-1) \le r\,x\Bigl(x^{\frac{1}{r}}-1\Bigr), \quad x,r\ge 1, \quad 2^{-x} \le 1 - x^2, \quad x\in[0,1].
$$$$
x\,e^x \ge x+ x^2 + \frac{x^3}{2}, \quad e^x \le x+ e^{x^2}, \quad e^x+e^{-x} \le 2e^{\frac{x^2}{2}}, \quad x\in\mathbb{R}.
$$$$
e^{-x} \le 1 - x^2, \quad x\in [0,1.59], \quad e^x \le 1+x+x^2, \quad x<1.79.
$$$$
\left(1+\frac{x}{p}\right)^p \ge \left(1+\frac{x}{q}\right)^q, \quad \text{for } 
\begin{cases}
x>0,\; p>q>0, \\ 
-p < -q < x < 0, \\ 
-q > -p > x > 0.
\end{cases}
$$$$
\text{Reversed for } q<0<p, -q>x>0, \quad \text{and } q<0<p, -p<x<0.
$$
$$\text{\textbf{Logarithmic and Harmonic Inequalities}}$$$$
\frac{x}{1+x} \le \ln(1+x) \le \frac{x(6+x)}{6+4x} \le x, \quad x>-1.
$$$$
\frac{2}{2+x} \le \frac{1}{\sqrt{1+x+\frac{x^2}{12}}} \le \frac{\ln(1+x)}{x} \le \frac{1}{\sqrt{x+1}} \le \frac{2+x}{2+2x}, \quad x>-1.
$$$$
\ln(n)+\frac{1}{n+1} < \ln(n+1) < \ln(n) + \frac{1}{n} \le \sum_{i=1}^n \frac{1}{i} \le \ln(n)+1, \quad n\ge 1.
$$$$
|\ln x| \le \frac{1}{2}\left|\frac{x-1}{x}\right|, \quad \ln(x+y) \le \ln x + \frac{y}{x}, \quad \ln x \le y\Bigl(x^{\frac{1}{y}}-1\Bigr), \quad x,y>0.
$$$$
\ln(1+x) \ge x-\frac{x^2}{2}, \quad x\ge 0, \quad \ln(1+x) \ge x-x^2, \quad x\ge -0.68.
$$
$$\text{\textbf{Trigonometric and Hyperbolic Inequalities}}$$$$
x-\frac{x^3}{2} \le x\cos x \le x\cos\left(x^{1-\frac{x^2}{3}}\right) \le x^3\sqrt{\cos x} \le x-\frac{x^3}{6} \le x\cos x\sqrt{3} \le \sin x.
$$$$
x\cos x \le x^3\sinh^2 x \le x\cos^2\left(\frac{x}{2}\right) \le \sin x \le \frac{x\cos x+ 2x}{3} \le x^2\sinh x.
$$$$
\max\left\{\frac{2}{\pi},\frac{\pi^2-x^2}{\pi^2+x^2}\right\} \le \frac{\sin x}{x} \le \cos^2 x \le 1 \le 1+\frac{x^2}{3} \le \frac{\tan x}{x}, \quad x\in\left[0,\frac{\pi}{2}\right].
$$$$\text{\textbf{Power Mean, AM-GM, and Related Inequalities}}$$$$
\left( \frac{x_1^p + x_2^p + \dots + x_n^p}{n} \right)^{\frac{1}{p}} \ge 
\left( \frac{x_1^q + x_2^q + \dots + x_n^q}{n} \right)^{\frac{1}{q}}, 
\quad \text{for } p > q.
$$$$
\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n} \ge 
\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}.
$$$$
\frac{x+y}{2} \ge \sqrt{xy} \ge \frac{2xy}{x+y}, \quad x, y > 0.
$$$$
\frac{x+y+z}{3} \ge \sqrt[3]{xyz} \ge \frac{3xyz}{xy+yz+zx}.
$$$$
\frac{x^r+y^r}{2} \ge \left( \frac{x+y}{2} \right)^r, \quad x, y > 0, \; r \ge 1.
$$
$$\text{\textbf{Jensen’s Inequality (Convex Functions)}}$$$$
\varphi \left( \sum_{i=1}^{n} p_i x_i \right) \leq \sum_{i=1}^{n} p_i \varphi(x_i),
\quad \text{for convex } \varphi \text{ and } p_i \geq 0, \sum p_i = 1.
$$
$$\text{\textbf{Chebyshev’s Inequality (Monotonic Functions)}}$$$$
\sum_{i=1}^{n} f(x_i) g(x_i) p_i \geq 
\left( \sum_{i=1}^{n} f(x_i) p_i \right) 
\left( \sum_{i=1}^{n} g(x_i) p_i \right),
$$$$
\text{for } x_1 \leq x_2 \leq \dots \leq x_n, \text{ with } f, g \text{ increasing}.
$$
$$\text{\textbf{Rearrangement Inequality}}$$$$
\sum_{i=1}^{n} a_i b_{\sigma(i)} \geq \sum_{i=1}^{n} a_i b_{\tau(i)},
$$$$
\text{for } a_1 \leq a_2 \leq \dots \leq a_n \text{ and } b_1 \leq b_2 \leq \dots \leq b_n,
$$$$
\text{where } \sigma \text{ is the identity permutation and } \tau \text{ any other permutation}.
$$
$$\text{\textbf{Majorization Inequality}}$$$$
\sum_{i=1}^{n} \varphi(a_i) \geq \sum_{i=1}^{n} \varphi(b_i),
$$$$
\text{if } a \text{ majorizes } b, \text{ and } \varphi \text{ is convex}.
$$
$$\text{\textbf{Generalized Nesbitt’s Inequality}}$$$$
\sum_{i=1}^{n} \frac{x_i}{x_{i+1} + x_{i+2} + \dots + x_{i+k}} \geq 
\frac{n}{k}, \quad x_i > 0.
$$
$$\text{\textbf{Weighted AM-GM Inequality}}$$$$
w_1 x_1 + w_2 x_2 + \dots + w_n x_n \geq x_1^{w_1} x_2^{w_2} \dots x_n^{w_n},
$$$$
\text{where } w_i \geq 0, \sum w_i = 1, \text{ and } x_i > 0.
$$
$$\text{\textbf{Weighted Power Mean Inequality}}$$$$
\left( \sum w_i x_i^p \right)^{\frac{1}{p}} \geq \left( \sum w_i x_i^q \right)^{\frac{1}{q}},
\quad \text{for } p > q.
$$
$$\text{\textbf{Karamata’s Inequality (Convex Functions and Majorization)}}$$$$
\sum_{i=1}^{n} \varphi(a_i) \geq \sum_{i=1}^{n} \varphi(b_i),
$$$$
\text{if } a \text{ majorizes } b, \text{ and } \varphi \text{ is convex}.
$$$$\text{\textbf{Inequalities in Probability and Statistics}}$$$$
\Pr(|X| \geq a) \leq \frac{E[|X|]}{a}, \quad a > 0 \quad \text{(Markov's Inequality)}
$$$$
\Pr(|X - E[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^2}, \quad t > 0 \quad \text{(Chebyshev's Inequality)}
$$$$
\Pr(|X - \mathbb{E}[X]| \geq \delta) \leq 2\exp\left(-\frac{2\delta^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right),
$$$$
\text{for independent } X_i \text{ with } X_i \in [a_i, b_i] \quad \text{(Hoeffding's Inequality)}.
$$
$$\text{\textbf{Bernstein’s Inequality}}$$$$
\Pr\left(S_n - E[S_n] \geq t\right) \leq \exp\left(\frac{-t^2}{2(\sigma^2 + Rt/3)}\right),
$$$$
\text{for i.i.d. } X_i \text{ with } |X_i - E[X_i]| \leq R \text{ and variance } \sigma^2.
$$
$$\text{\textbf{Chernoff Bound (Multiplicative Form)}}$$$$
\Pr(S_n \geq (1+\delta)E[S_n]) \leq \exp\left(-\frac{\delta^2}{2+\delta} E[S_n]\right),
$$$$
\Pr(S_n \leq (1-\delta)E[S_n]) \leq \exp\left(-\frac{\delta^2}{2} E[S_n]\right),
$$$$
\text{for independent } X_i \text{ taking values in } [0,1].
$$
$$\text{\textbf{Azuma’s Inequality}}$$$$
\Pr(|S_n - E[S_n]| \geq t) \leq 2\exp\left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2}\right),
$$$$
\text{for a martingale } S_n \text{ with bounded differences } |S_i - S_{i-1}| \leq c_i.
$$
$$\text{\textbf{Gibb’s Inequality (Relative Entropy)}}$$$$
\sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} \geq 0, \quad \text{for probability distributions } \{p_i\}, \{q_i\}.
$$
$$\text{\textbf{Jensen’s Inequality (Convex Functions in Expectation)}}$$$$
\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)],
$$$$
\text{for convex } \varphi.
$$
$$\text{\textbf{Fano’s Inequality (Information Theory)}}$$$$
H(Y|X) \leq h_b(P_e) + P_e \log(|\mathcal{Y}| - 1),
$$$$
\text{where } P_e \text{ is the probability of classification error}.
$$
$$\text{\textbf{Stirling’s Approximation}}$$$$
\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \leq n! \leq e \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.
$$$$
\text{Asymptotic form: } n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.
$$
$$\text{\textbf{Entropy Inequalities}}$$$$
H(X) \leq \log|\mathcal{X}|,
$$$$
H(X) \geq \sum_{i=1}^{n} p_i \log \frac{1}{p_i} = -\sum p_i \log p_i.
$$
$$\text{\textbf{Log-Sum Inequality}}$$$$
\sum_{i=1}^{n} p_i \log \frac{p_i}{q_i} \geq \left(\sum_{i=1}^{n} p_i\right) \log \frac{\sum_{i=1}^{n} p_i}{\sum_{i=1}^{n} q_i}.
$$
$$\text{\textbf{Generalized Mean Inequalities (Hölder’s Inequality for Sums)}}$$$$
\left( \sum_{i=1}^{n} p_i |x_i|^p \right)^{\frac{1}{p}} \geq \left( \sum_{i=1}^{n} p_i |x_i|^q \right)^{\frac{1}{q}}, \quad \text{for } p > q.
$$
$$\text{\textbf{Subadditivity of Entropy}}$$$$
H(X, Y) \leq H(X) + H(Y).
$$
$$\text{\textbf{Pinsker’s Inequality (Total Variation Distance and KL Divergence)}}$$$$
D_{\text{KL}}(P||Q) \geq \frac{1}{2} ||P - Q||_{\text{TV}}^2.
$$
This post has been edited 3 times. Last edited by SomeonecoolLovesMaths, Feb 21, 2025, 2:11 PM

Comment

5 Comments

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
thank u sir , lots of love

by sks987, Feb 22, 2025, 7:49 AM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nicce one bro

by alexanderhamilton124, Mar 6, 2025, 6:55 PM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
$x \cos x \leq x^3 \sqrt{\cos x}$ ??

by quasar_lord, Mar 12, 2025, 5:42 PM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
while me only knowing 3

by L13832, Mar 16, 2025, 7:07 AM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Im here forever

by giangtruong13, Mar 17, 2025, 7:38 AM

My First Blog

avatar

SomeonecoolLovesMaths
Shouts
Submit
  • I will bookmarked this blog

    by giangtruong13, Yesterday at 7:37 AM

  • W blog op

    by quasar_lord, Mar 10, 2025, 5:32 PM

  • orz blog
    how so orzzzz

    by Erratum, Jan 31, 2025, 9:47 AM

  • shouts; your post is too short , it must be atleast 8 characters

    by mqoi_KOLA, Dec 5, 2024, 6:37 PM

  • Guys it took my like 10 hours to do this! Idk why did I even do this, but now it looks kinda satisfying ngl.

    by SomeonecoolLovesMaths, Nov 25, 2024, 5:07 PM

  • add this one new thing to the intergrals that is lim n tends to infinity b-a/n summation k=1 to n f(a+k(b-a)/n))= int_{a}^b f(x) dx

    by Levieee, Nov 21, 2024, 8:37 PM

  • woahh hi HSM main orz blog!!!

    by eg4334, Nov 17, 2024, 3:31 PM

  • Me in 4 years of Aops - 555 posts.

    This guy in 10 months of Aops - 2608 posts

    by HoRI_DA_GRe8, Oct 17, 2024, 10:22 AM

  • Remember; the one who falls and gets back up is stronger than the ones who never tried... Good luck for next year's IOQM

    by alexanderhamilton124, Oct 15, 2024, 7:03 AM

  • fourth shout

    by QueenArwen, Sep 2, 2024, 4:05 PM

  • Hii
    !!!!!!!!!!!

    by Yummo, Apr 2, 2024, 2:43 PM

  • i am shouting. it is very loud.

    by fruitmonster97, Mar 21, 2024, 7:49 PM

  • real!!!!!

    by SirAppel, Mar 17, 2024, 6:22 PM

13 shouts
Tags
About Owner
  • Posts: 3139
  • Joined: Dec 22, 2023
Blog Stats
  • Blog created: Mar 17, 2024
  • Total entries: 20
  • Total visits: 1249
  • Total comments: 19
Search Blog
a