inequalities

by Ducksohappi, May 16, 2025, 12:57 PM

let a,b,c be non-negative numbers such that ab+bc+ca>0. Prove:
$ \sum_{cyc} \frac{b+c}{2a^2+bc}\ge \frac{6}{a+b+c}$
P/s: I have analysed:$ S_a=\frac{b^2+c^2+3bc-ab-ac}{(2b^2+ac)(2c^2+2ab)}$, similarly to $S_b, S_c$, by SOS
This post has been edited 1 time. Last edited by Ducksohappi, an hour ago

Interesting inequalities

by sqing, May 16, 2025, 4:34 AM

Let $a,b,c \geq 0 $ and $ab+bc+ca- abc =3.$ Show that
$$a+k(b+c)\geq 2\sqrt{3 k}$$Where $ k\geq 1. $
Let $a,b,c \geq 0 $ and $2(ab+bc+ca)- abc =31.$ Show that
$$a+k(b+c)\geq \sqrt{62k}$$Where $ k\geq 1. $

Simple but hard

by Lukariman, May 16, 2025, 2:47 AM

Given triangle ABC. Outside the triangle, construct rectangles ACDE and BCFG with equal areas. Let M be the midpoint of DF. Prove that CM passes through the center of the circle circumscribing triangle ABC.
Attachments:
This post has been edited 2 times. Last edited by Lukariman, 5 hours ago

Good Permutations in Modulo n

by swynca, Apr 27, 2025, 2:03 PM

An integer $n > 1$ is called $\emph{good}$ if there exists a permutation $a_1, a_2, a_3, \dots, a_n$ of the numbers $1, 2, 3, \dots, n$, such that:
$(i)$ $a_i$ and $a_{i+1}$ have different parities for every $1 \leq i \leq n-1$;
$(ii)$ the sum $a_1 + a_2 + \cdots + a_k$ is a quadratic residue modulo $n$ for every $1 \leq k \leq n$.
Prove that there exist infinitely many good numbers, as well as infinitely many positive integers which are not good.
This post has been edited 2 times. Last edited by swynca, Apr 27, 2025, 4:15 PM

sqrt(2)<=|1+z|+|1+z^2|<=4

by SuiePaprude, Jan 23, 2025, 10:53 PM

let z be a complex number with |z|=1 show that sqrt2 <=|1+z|+|1+z^2|<=4

concyclic wanted, diameter related

by parmenides51, May 5, 2024, 1:26 AM

As shown in the figure, $AB$ is the diameter of circle $\odot O$, and chords $AC$ and $BD$ intersect at point $E$, $EF\perp AB$ intersects at point $F$, and $FC$ intersects $BD$ at point $G$. Point $M$ lies on $AB$ such that $MD=MG$ . Prove that points $F$, $M$, $D$, $G$ lies on a circle.
https://cdn.artofproblemsolving.com/attachments/2/3/614ef5b9e8c8b16a29b8b960290ef9d7297529.jpg
This post has been edited 1 time. Last edited by parmenides51, May 5, 2024, 1:27 AM

Grid combo with tilings

by a_507_bc, Apr 23, 2023, 3:40 PM

A square grid $100 \times 100$ is tiled in two ways - only with dominoes and only with squares $2 \times 2$. What is the least number of dominoes that are entirely inside some square $2 \times 2$?

<ACB=90^o if AD = BD , <ACD = 3 <BAC, AM=//MD, CM//AB,

by parmenides51, Oct 7, 2022, 8:15 PM

In the convex quadrilateral $ABCD$, $AD = BD$ and $\angle ACD  = 3 \angle BAC$. Let $M$ be the midpoint of side $AD$. If the lines $CM$ and $AB$ are parallel, prove that the angle $\angle  ACB$ is right.

bulgarian concurrency, parallelograms and midpoints related

by parmenides51, May 28, 2019, 2:10 PM

In a triangle $\triangle ABC$ points $L, P$ and $Q$ lie on the segments $AB, AC$ and $BC$, respectively, and are such that $PCQL$ is a parallelogram. The circle with center the midpoint $M$ of the segment $AB$ and radius $CM$ and the circle of diameter $CL$ intersect for the second time at the point $T$. Prove that the lines $AQ, BP$ and $LT$ intersect in a point.

Concurrency

by Omid Hatami, May 20, 2008, 9:29 AM

Suppose that $ I$ is incenter of triangle $ ABC$ and $ l'$ is a line tangent to the incircle. Let $ l$ be another line such that intersects $ AB,AC,BC$ respectively at $ C',B',A'$. We draw a tangent from $ A'$ to the incircle other than $ BC$, and this line intersects with $ l'$ at $ A_1$. $ B_1,C_1$ are similarly defined. Prove that $ AA_1,BB_1,CC_1$ are concurrent.

This blog is about large numbers. There. Have I bored you yet?

avatar

googology101
Shouts
Submit
  • 11 year bump

    by john0512, Dec 28, 2020, 3:03 AM

  • Sure.

    by googology101, Feb 12, 2009, 12:38 AM

  • me want contrib

    by gauss1181, Feb 11, 2009, 5:49 PM

  • Sorry, I ran out of time on the last shout...

    by googology101, Feb 8, 2009, 11:19 PM

  • and contrib?

    by james4l, Feb 8, 2009, 4:42 AM

  • I guess...

    by googology101, Feb 7, 2009, 11:49 PM

  • contrib please

    by james4l, Feb 7, 2009, 10:18 PM

  • Yeah, I noticed that too. I'll change it later, but there's a weird glitch for you. The top and left properties should be automatically set to 0 if position is set to absolute or fixed. Go Firefox!

    by googology101, Jan 21, 2009, 10:03 PM

  • i viewed this from ie and it looks like position fixed also ruins the left aligned so put left:0. nice submit buttons

    by Sephiroth, Jan 21, 2009, 5:32 AM

  • Use filter:alpha(opacity=80) to make it semitransparent in IE. And make sure you use -moz-opacity instead of opacity to make sure that older versions of Firefox will cooperate. And by the way, you're free to copy the code. The whole thing is at http://www.artofproblemsolving.com/Forum/templates/blogs/Hyperion/style/c1366.css

    by googology101, Jan 19, 2009, 9:50 PM

  • add filter: alpha(opacity=80) and opacity:0.8

    by Sephiroth, Jan 19, 2009, 3:51 AM

  • Could I use that code in my blog?

    by dysfunctionalequations, Jan 19, 2009, 1:51 AM

  • Watch out! position:fixed ruins the box's 100% width. Here's the code I used:

    #navigation_box {
    background-color: #005500 !important;
    border-bottom-style:solid !important;
    -moz-opacity:0.80;
    color:white !important;
    position:fixed !important;
    width:100%;
    padding-right:10px;
    }

    Don't overdo the opacity. 0.80 or 0.90 will do. Sorry, IE and Safari users, you aren't seeing it.

    by googology101, Jan 19, 2009, 1:26 AM

  • what do you mean by floating menus? like how he made navigation_box fixed? he used "#navigation_box{ position: fixed;}" i like how you made it opacity :)

    by Sephiroth, Jan 18, 2009, 4:45 AM

  • Floating menus? How do you do that?

    by dysfunctionalequations, Jan 18, 2009, 1:25 AM

  • Yup. I'm trying to post daily.

    by googology101, Jan 14, 2009, 12:05 AM

  • 3rd post!

    by 007math, Jan 13, 2009, 11:57 PM

  • Do you mean to this blog?

    by googology101, Jan 12, 2009, 9:30 PM

  • Can i be a contributor?

    by Wickedestjr, Jan 12, 2009, 5:49 PM

19 shouts
Tags
About Owner
  • Posts: 21
  • Joined: Jan 5, 2009
Blog Stats
  • Blog created: Jan 11, 2009
  • Total entries: 35
  • Total visits: 24321
  • Total comments: 37
Search Blog
a