[Signups Now!] - Inaugural Academy Math Tournament

by elements2015, May 12, 2025, 8:13 PM

Hello!

Pace Academy, from Atlanta, Georgia, is thrilled to host our Inaugural Academy Math Tournament online through Saturday, May 31.

AOPS students are welcome to participate online, as teams or as individuals (results will be reported separately for AOPS and Georgia competitors). The difficulty of the competition ranges from early AMC to mid-late AIME, and is 2 hours long with multiple sections. The format is explained in more detail below. If you just want to sign up, here's the link:

https://forms.gle/ih548axqQ9qLz3pk7

If participating as a team, each competitor must sign up individually and coordinate team names!

Detailed information below:

Divisions & Teams
  • Junior Varsity: Students in 10th grade or below who are enrolled in Algebra 2 or below.
  • Varsity: All other students.
  • Teams of up to four students compete together in the same division.
    • (If you have two JV‑eligible and two Varsity‑eligible students, you may enter either two teams of two or one four‑student team in Varsity.)
    • You may enter multiple teams from your school in either division.
    • Teams need not compete at the same time. Each individual will complete the test alone, and team scores will be the sum of individual scores.
Competition Format
Both sections—Sprint and Challenge—will be administered consecutively in a single, individually completed 120-minute test. Students may allocate time between the sections however they wish to.
  1. Sprint Section
    • 25 multiple‑choice questions (five choices each)
    • recommended 2 minutes per question
    • 6 points per correct answer; no penalty for guessing
  2. Challenge Section
    • 18 open‑ended questions
    • answers are integers between 1 and 10,000
    • recommended 3 or 4 minutes per question
    • 8 points each
You may use blank scratch/graph paper, rulers, compasses, protractors, and erasers. No calculators are allowed on this examination.

Awards & Scoring
  • There are no cash prizes.
  • Team Awards: Based on the sum of individual scores (four‑student teams have the advantage). Top 8 teams in each division will be recognized.
  • Individual Awards: Top 8 individuals in each division, determined by combined Sprint + Challenge scores, will receive recognition.
How to Sign Up
Please have EACH STUDENT INDIVIDUALLY reserve a 120-minute window for your team's online test in THIS GOOGLE FORM:
https://forms.gle/ih548axqQ9qLz3pk7
EACH STUDENT MUST REPLY INDIVIDUALLY TO THE GOOGLE FORM.
You may select any slot from now through May 31, weekdays or weekends. You will receive an email with the questions and a form for answers at the time you receive the competition. There will be a 15-minute grace period for entering answers after the competition.

camp/class recommendations for incoming freshman

by walterboro, May 10, 2025, 6:45 PM

hi guys, i'm about to be an incoming freshman, does anyone have recommendations for classes to take next year and camps this summer? i am sure that i can aime qual but not jmo qual yet. ty

Jane street swag package? USA(J)MO

by arfekete, May 7, 2025, 4:34 PM

Hey! People are starting to get their swag packages from Jane Street for qualifying for USA(J)MO, and after some initial discussion on what we got, people are getting different things. Out of curiosity, I was wondering how they decide who gets what.
Please enter the following info:

- USAMO or USAJMO
- Grade
- Score
- Award/Medal/HM
- MOP (yes or no, if yes then color)
- List of items you got in your package

I will reply with my info as an example.
L

ranttttt

by alcumusftwgrind, Apr 30, 2025, 11:04 PM

rant

Circle in a Parallelogram

by djmathman, Feb 9, 2022, 7:04 PM

Let $ABCD$ be a parallelogram with $\angle BAD < 90^{\circ}$. A circle tangent to sides $\overline{DA}$, $\overline{AB}$, and $\overline{BC}$ intersects diagonal $\overline{AC}$ at points $P$ and $Q$ with $AP < AQ$, as shown. Suppose that $AP = 3$, $PQ = 9$, and $QC = 16$. Then the area of $ABCD$ can be expressed in the form $m\sqrt n$, where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

[asy]
defaultpen(linewidth(0.6)+fontsize(11));
size(8cm);
pair A,B,C,D,P,Q;
A=(0,0);
label("$A$", A, SW);
B=(6,15);
label("$B$", B, NW);
C=(30,15);
label("$C$", C, NE);
D=(24,0);
label("$D$", D, SE);
P=(5.2,2.6);
label("$P$", (5.8,2.6), N);
Q=(18.3,9.1);
label("$Q$", (18.1,9.7), W);
draw(A--B--C--D--cycle);
draw(C--A);
draw(Circle((10.95,7.45), 7.45));
dot(A^^B^^C^^D^^P^^Q);
[/asy]

Evan's mean blackboard game

by hwl0304, Apr 18, 2019, 10:58 PM

Two rational numbers \(\tfrac{m}{n}\) and \(\tfrac{n}{m}\) are written on a blackboard, where \(m\) and \(n\) are relatively prime positive integers. At any point, Evan may pick two of the numbers \(x\) and \(y\) written on the board and write either their arithmetic mean \(\tfrac{x+y}{2}\) or their harmonic mean \(\tfrac{2xy}{x+y}\) on the board as well. Find all pairs \((m,n)\) such that Evan can write 1 on the board in finitely many steps.

Proposed by Yannick Yao
This post has been edited 1 time. Last edited by djmathman, Apr 19, 2019, 2:31 PM

Lots of Cyclic Quads

by Vfire, Apr 19, 2018, 11:00 PM

In convex cyclic quadrilateral $ABCD$, we know that lines $AC$ and $BD$ intersect at $E$, lines $AB$ and $CD$ intersect at $F$, and lines $BC$ and $DA$ intersect at $G$. Suppose that the circumcircle of $\triangle ABE$ intersects line $CB$ at $B$ and $P$, and the circumcircle of $\triangle ADE$ intersects line $CD$ at $D$ and $Q$, where $C,B,P,G$ and $C,Q,D,F$ are collinear in that order. Prove that if lines $FP$ and $GQ$ intersect at $M$, then $\angle MAC = 90^\circ$.

Proposed by Kada Williams
This post has been edited 2 times. Last edited by djmathman, Jun 22, 2020, 5:49 AM

Circle Incident

by MSTang, Mar 4, 2016, 3:27 PM

Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.

Points Collinear iff Sum is Constant

by djmathman, Apr 29, 2014, 10:41 PM

Prove that there exists an infinite set of points \[ \dots, \; P_{-3}, \; P_{-2},\; P_{-1},\; P_0,\; P_1,\; P_2,\; P_3,\; \dots \] in the plane with the following property: For any three distinct integers $a,b,$ and $c$, points $P_a$, $P_b$, and $P_c$ are collinear if and only if $a+b+c=2014$.

Cyclic Quad

by worthawholebean, May 1, 2008, 5:01 PM

Let $ ABC$ be an acute, scalene triangle, and let $ M$, $ N$, and $ P$ be the midpoints of $ \overline{BC}$, $ \overline{CA}$, and $ \overline{AB}$, respectively. Let the perpendicular bisectors of $ \overline{AB}$ and $ \overline{AC}$ intersect ray $ AM$ in points $ D$ and $ E$ respectively, and let lines $ BD$ and $ CE$ intersect in point $ F$, inside of triangle $ ABC$. Prove that points $ A$, $ N$, $ F$, and $ P$ all lie on one circle.

This blog is about large numbers. There. Have I bored you yet?

avatar

googology101
Shouts
Submit
  • 11 year bump

    by john0512, Dec 28, 2020, 3:03 AM

  • Sure.

    by googology101, Feb 12, 2009, 12:38 AM

  • me want contrib

    by gauss1181, Feb 11, 2009, 5:49 PM

  • Sorry, I ran out of time on the last shout...

    by googology101, Feb 8, 2009, 11:19 PM

  • and contrib?

    by james4l, Feb 8, 2009, 4:42 AM

  • I guess...

    by googology101, Feb 7, 2009, 11:49 PM

  • contrib please

    by james4l, Feb 7, 2009, 10:18 PM

  • Yeah, I noticed that too. I'll change it later, but there's a weird glitch for you. The top and left properties should be automatically set to 0 if position is set to absolute or fixed. Go Firefox!

    by googology101, Jan 21, 2009, 10:03 PM

  • i viewed this from ie and it looks like position fixed also ruins the left aligned so put left:0. nice submit buttons

    by Sephiroth, Jan 21, 2009, 5:32 AM

  • Use filter:alpha(opacity=80) to make it semitransparent in IE. And make sure you use -moz-opacity instead of opacity to make sure that older versions of Firefox will cooperate. And by the way, you're free to copy the code. The whole thing is at http://www.artofproblemsolving.com/Forum/templates/blogs/Hyperion/style/c1366.css

    by googology101, Jan 19, 2009, 9:50 PM

  • add filter: alpha(opacity=80) and opacity:0.8

    by Sephiroth, Jan 19, 2009, 3:51 AM

  • Could I use that code in my blog?

    by dysfunctionalequations, Jan 19, 2009, 1:51 AM

  • Watch out! position:fixed ruins the box's 100% width. Here's the code I used:

    #navigation_box {
    background-color: #005500 !important;
    border-bottom-style:solid !important;
    -moz-opacity:0.80;
    color:white !important;
    position:fixed !important;
    width:100%;
    padding-right:10px;
    }

    Don't overdo the opacity. 0.80 or 0.90 will do. Sorry, IE and Safari users, you aren't seeing it.

    by googology101, Jan 19, 2009, 1:26 AM

  • what do you mean by floating menus? like how he made navigation_box fixed? he used "#navigation_box{ position: fixed;}" i like how you made it opacity :)

    by Sephiroth, Jan 18, 2009, 4:45 AM

  • Floating menus? How do you do that?

    by dysfunctionalequations, Jan 18, 2009, 1:25 AM

  • Yup. I'm trying to post daily.

    by googology101, Jan 14, 2009, 12:05 AM

  • 3rd post!

    by 007math, Jan 13, 2009, 11:57 PM

  • Do you mean to this blog?

    by googology101, Jan 12, 2009, 9:30 PM

  • Can i be a contributor?

    by Wickedestjr, Jan 12, 2009, 5:49 PM

19 shouts
Tags
About Owner
  • Posts: 21
  • Joined: Jan 5, 2009
Blog Stats
  • Blog created: Jan 11, 2009
  • Total entries: 35
  • Total visits: 24312
  • Total comments: 37
Search Blog
a