hard problem

by Cobedangiu, Apr 21, 2025, 1:51 PM

Let $a,b,c>0$ and $a+b+c=3$. Prove that:
$\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a} \le \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3$

Bounding number of solutions for floor function equation

by Ciobi_, Apr 2, 2025, 12:39 PM

Let $n \geq 2$ be a positive integer. Consider the following equation: \[ \{x\}+\{2x\}+ \dots + \{nx\} = \lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor 2nx \rfloor\]a) For $n=2$, solve the given equation in $\mathbb{R}$.
b) Prove that, for any $n \geq 2$, the equation has at most $2$ real solutions.

Normal but good inequality

by giangtruong13, Mar 31, 2025, 4:04 PM

Let $a,b,c> 0$ satisfy that $a+b+c=3abc$. Prove that: $$\sum_{cyc} \frac{ab}{3c+ab+abc} \geq \frac{3}{5} $$

Function on positive integers with two inputs

by Assassino9931, Jan 27, 2025, 10:03 AM

The function $f: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is such that $f(a,b) + f(b,c) = f(ac, b^2) + 1$ for any positive integers $a,b,c$. Assume there exists a positive integer $n$ such that $f(n, m) \leq f(n, m + 1)$ for all positive integers $m$. Determine all possible values of $f(2025, 2025)$.
This post has been edited 1 time. Last edited by Assassino9931, Jan 27, 2025, 10:06 AM

Inequalities

by idomybest, Oct 15, 2021, 9:16 PM

Problem 1

by SpectralS, Jul 10, 2012, 5:24 PM

Given triangle $ABC$ the point $J$ is the centre of the excircle opposite the vertex $A.$ This excircle is tangent to the side $BC$ at $M$, and to the lines $AB$ and $AC$ at $K$ and $L$, respectively. The lines $LM$ and $BJ$ meet at $F$, and the lines $KM$ and $CJ$ meet at $G.$ Let $S$ be the point of intersection of the lines $AF$ and $BC$, and let $T$ be the point of intersection of the lines $AG$ and $BC.$ Prove that $M$ is the midpoint of $ST.$

(The excircle of $ABC$ opposite the vertex $A$ is the circle that is tangent to the line segment $BC$, to the ray $AB$ beyond $B$, and to the ray $AC$ beyond $C$.)

Proposed by Evangelos Psychas, Greece

APMO 2012 #3

by syk0526, Apr 2, 2012, 3:09 PM

Determine all the pairs $ (p , n )$ of a prime number $ p$ and a positive integer $ n$ for which $ \frac{ n^p + 1 }{p^n + 1} $ is an integer.

nice system of equations

by outback, Oct 8, 2008, 2:41 PM

Solve in positive numbers the system

$ x_1+\frac{1}{x_2}=4, x_2+\frac{1}{x_3}=1, x_3+\frac{1}{x_4}=4, ..., x_{99}+\frac{1}{x_{100}}=4, x_{100}+\frac{1}{x_1}=1$

Two circles, a tangent line and a parallel

by Valentin Vornicu, Oct 24, 2005, 10:15 AM

Two circles $ G_1$ and $ G_2$ intersect at two points $ M$ and $ N$. Let $ AB$ be the line tangent to these circles at $ A$ and $ B$, respectively, so that $ M$ lies closer to $ AB$ than $ N$. Let $ CD$ be the line parallel to $ AB$ and passing through the point $ M$, with $ C$ on $ G_1$ and $ D$ on $ G_2$. Lines $ AC$ and $ BD$ meet at $ E$; lines $ AN$ and $ CD$ meet at $ P$; lines $ BN$ and $ CD$ meet at $ Q$. Show that $ EP = EQ$.

Number theory or function ?

by matematikator, Mar 18, 2005, 2:10 PM

Does there exist a function $s\colon \mathbb{Q} \rightarrow \{-1,1\}$ such that if $x$ and $y$ are distinct rational numbers satisfying ${xy=1}$ or ${x+y\in \{0,1\}}$, then ${s(x)s(y)=-1}$? Justify your answer.

Proposed by Dan Brown, Canada

This blog reflects my thoughts on the mathematics that I grapple with. Hopefully these rumblings could be organized as to be palatable to a mathematical audience.

avatar

iarnab_kundu
Tags
About Owner
  • Posts: 866
  • Joined: Jan 12, 2011
Blog Stats
  • Blog created: Mar 9, 2011
  • Total entries: 42
  • Total visits: 27216
  • Total comments: 24
Search Blog
a