Carnot's Theorem

by SomeonecoolLovesMaths, Mar 17, 2024, 6:56 AM

Carnot's Theorem states that in a triangle $ABC$ with $A_1\in BC$, $B_1\in AC$, and $C_1\in AB$, perpendiculars to the sides $BC$, $AC$, and $AB$ at $A_1$, $B_1$, and $C_1$ are concurrent if and only if $A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2$.

Proof

Only if: Assume that the given perpendiculars are concurrent at $M$. Then, from the Pythagorean Theorem, $A_1B^2=BM^2-MA_1^2$, $C_1A^2=AM^2-MC_1^2$, $B_1C^2=CM^2-MB_1^2$, $A_1C^2=MC^2-MA_1^2$, $C_1B^2=MB^2-MC_1^2$, and $B_1A^2=AM^2-MB_1^2$. Substituting each and every one of these in and simplifying gives the desired result.


If: Consider the intersection of the perpendiculars from $A_1$ and $B_1$. Call this intersection point $N$, and let $C_2$ be the perpendicular from $N$ to $AB$. From the other direction of the desired result, we have that $A_1B^2+C_2A^2+B_1C^2=A_1C^2+C_2B^2+B_1A^2$. We also have that $A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2$, which implies that $C_1A^2-C_1B^2=C_2A^2-C_2B^2$. This is a difference of squares, which we can easily factor into $(C_1A-C_1B)(C_1A+C_1B)=(C_2A-C_2B)(C_2A+C_2B)$. Note that $C_1A+C_1=C_2A+C_2B=AB$, so we have that $C_1A-C_1B=C_2A-C_2B$. This implies that $C_1=C_2$, which gives the desired result.

Comment

0 Comments

My First Blog

avatar

SomeonecoolLovesMaths
Shouts
Submit
  • I will bookmarked this blog

    by giangtruong13, Mar 17, 2025, 7:37 AM

  • W blog op

    by quasar_lord, Mar 10, 2025, 5:32 PM

  • orz blog
    how so orzzzz

    by Erratum, Jan 31, 2025, 9:47 AM

  • shouts; your post is too short , it must be atleast 8 characters

    by mqoi_KOLA, Dec 5, 2024, 6:37 PM

  • Guys it took my like 10 hours to do this! Idk why did I even do this, but now it looks kinda satisfying ngl.

    by SomeonecoolLovesMaths, Nov 25, 2024, 5:07 PM

  • add this one new thing to the intergrals that is lim n tends to infinity b-a/n summation k=1 to n f(a+k(b-a)/n))= int_{a}^b f(x) dx

    by Levieee, Nov 21, 2024, 8:37 PM

  • woahh hi HSM main orz blog!!!

    by eg4334, Nov 17, 2024, 3:31 PM

  • Me in 4 years of Aops - 555 posts.

    This guy in 10 months of Aops - 2608 posts

    by HoRI_DA_GRe8, Oct 17, 2024, 10:22 AM

  • Remember; the one who falls and gets back up is stronger than the ones who never tried... Good luck for next year's IOQM

    by alexanderhamilton124, Oct 15, 2024, 7:03 AM

  • fourth shout

    by QueenArwen, Sep 2, 2024, 4:05 PM

  • Hii
    !!!!!!!!!!!

    by Yummo, Apr 2, 2024, 2:43 PM

  • i am shouting. it is very loud.

    by fruitmonster97, Mar 21, 2024, 7:49 PM

  • real!!!!!

    by SirAppel, Mar 17, 2024, 6:22 PM

13 shouts
Tags
About Owner
  • Posts: 3146
  • Joined: Dec 22, 2023
Blog Stats
  • Blog created: Mar 17, 2024
  • Total entries: 20
  • Total visits: 1280
  • Total comments: 19
Search Blog
a