A Collection of Geometry Problems
by SomeonecoolLovesMaths, Dec 6, 2024, 9:54 AM
Here is a collection of geometry problems and solutions for new ideas:
Q1
S1![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.26,3.82)--(-6.92,-1.34)--(6.76,-1.62)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.26,3.82)--(-6.92,-1.34), linewidth(2) + zzttqq);
draw((-6.92,-1.34)--(6.76,-1.62), linewidth(2) + zzttqq);
draw((6.76,-1.62)--(-3.26,3.82), linewidth(2) + zzttqq);
draw((xmin, 48.857142857142854*xmin + 163.0942857142857)--(xmax, 48.857142857142854*xmax + 163.0942857142857), linewidth(2)); /* line */
draw((-3.26,3.82)--(-0.08,-1.48), linewidth(2));
/* dots and labels */
dot((-3.26,3.82),dotstyle);
label("$A$", (-3.18,4.02), NE * labelscalefactor);
dot((-6.92,-1.34),dotstyle);
label("$B$", (-6.84,-1.14), NE * labelscalefactor);
dot((6.76,-1.62),dotstyle);
label("$C$", (6.84,-1.42), NE * labelscalefactor);
label("$c$", (-5.36,1.44), NE * labelscalefactor,zzttqq);
label("$a$", (-0.1,-1.78), NE * labelscalefactor,zzttqq);
label("$b$", (1.9,1.4), NE * labelscalefactor,zzttqq);
label("$f$", (-3.08,4.92), NE * labelscalefactor);
dot((-3.36710245870117,-1.4127201251143038),linewidth(4pt) + dotstyle);
label("$D$", (-3.28,-1.26), NE * labelscalefactor);
dot((-0.08,-1.48),linewidth(4pt) + dotstyle);
label("$E$", (0,-1.32), NE * labelscalefactor);
label("$g$", (-1.96,1.02), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/2/7/4/274d0dbc781e3bc128d6477a45f887b2ed13f17b.png)
.
as
.
Using Internal Angle Bisector Theorem in
.
, or,
.
Using Pythagorean Theorem in
,
, or,
.
Using Pythagorean Theorem in
,
.
Thus
.
Thus the closest integer is
.
S1 by lbh_qys
Q2
S2






Q3
S3
Q4
S4![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.58,2.26)--(-3.64,-3.22)--(1.84,-3.28)--(1.9,2.2)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.58,2.26)--(-3.64,-3.22), linewidth(2) + zzttqq);
draw((-3.64,-3.22)--(1.84,-3.28), linewidth(2) + zzttqq);
draw((1.84,-3.28)--(1.9,2.2), linewidth(2) + zzttqq);
draw((1.9,2.2)--(-3.58,2.26), linewidth(2) + zzttqq);
draw((-3.5946697742558436,0.9201606179663049)--(1.8594891123393478,-1.499994406339482), linewidth(2));
draw((xmin, 2.253640296517657*xmin + 0.49841400936201097)--(xmax, 2.253640296517657*xmax + 0.49841400936201097), linewidth(2)); /* line */
draw((0.760574548844643,2.2124754611440354)--(-1.6595804754611438,-3.2416834254511557), linewidth(2));
draw((xmin, -0.010948905109489145*xmin-1.47963503649635)--(xmax, -0.010948905109489145*xmax-1.47963503649635), linewidth(2)); /* line */
draw((xmin, 91.33333333333121*xmin + 148.3333333333298)--(xmax, 91.33333333333121*xmax + 148.3333333333298), linewidth(2)); /* line */
/* dots and labels */
dot((-3.58,2.26),dotstyle);
label("$A$", (-3.5,2.46), NE * labelscalefactor);
dot((-3.64,-3.22),dotstyle);
label("$B$", (-3.56,-3.02), NE * labelscalefactor);
dot((1.84,-3.28),dotstyle);
label("$C$", (1.92,-3.08), NE * labelscalefactor);
dot((1.9,2.2),dotstyle);
label("$D$", (1.98,2.4), NE * labelscalefactor);
dot((-3.5946697742558436,0.9201606179663049),dotstyle);
label("$E$", (-3.52,1.12), NE * labelscalefactor);
dot((1.8594891123393478,-1.499994406339482),dotstyle);
label("$F$", (1.94,-1.3), NE * labelscalefactor);
label("$j$", (-1,-0.58), NE * labelscalefactor);
dot((-1.6595804754611438,-3.2416834254511557),dotstyle);
label("$G$", (-1.58,-3.04), NE * labelscalefactor);
label("$k$", (1.74,4.92), NE * labelscalefactor);
dot((0.760574548844643,2.2124754611440354),linewidth(4pt) + dotstyle);
label("$H$", (0.84,2.38), NE * labelscalefactor);
label("$l$", (-0.76,-0.38), NE * labelscalefactor);
label("$m$", (-8.76,-1.22), NE * labelscalefactor);
label("$n$", (-1.42,4.92), NE * labelscalefactor);
dot((-1.5995804754611425,2.238316574548844),linewidth(4pt) + dotstyle);
label("$I$", (-1.52,2.4), NE * labelscalefactor);
dot((-3.620510887660651,-1.4399944063394812),linewidth(4pt) + dotstyle);
label("$J$", (-3.54,-1.28), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/c/8/c/c8c25eae8a34b902f4eb033642872f74f9afe087.png)
We rename the points as per the diagram.
Let
and
.
Then,
as
, and
and
.
Thus the required length is
.
S4 by Mathzeus1024
Q5
S5
Q6
S6
Q7
S7
Q8
S8
Q9
S9
Q1
In a triangle
, the altitude
and the median
divide
into three equal parts. If
, then the nearest integer to
is?






S1
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.26,3.82)--(-6.92,-1.34)--(6.76,-1.62)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.26,3.82)--(-6.92,-1.34), linewidth(2) + zzttqq);
draw((-6.92,-1.34)--(6.76,-1.62), linewidth(2) + zzttqq);
draw((6.76,-1.62)--(-3.26,3.82), linewidth(2) + zzttqq);
draw((xmin, 48.857142857142854*xmin + 163.0942857142857)--(xmax, 48.857142857142854*xmax + 163.0942857142857), linewidth(2)); /* line */
draw((-3.26,3.82)--(-0.08,-1.48), linewidth(2));
/* dots and labels */
dot((-3.26,3.82),dotstyle);
label("$A$", (-3.18,4.02), NE * labelscalefactor);
dot((-6.92,-1.34),dotstyle);
label("$B$", (-6.84,-1.14), NE * labelscalefactor);
dot((6.76,-1.62),dotstyle);
label("$C$", (6.84,-1.42), NE * labelscalefactor);
label("$c$", (-5.36,1.44), NE * labelscalefactor,zzttqq);
label("$a$", (-0.1,-1.78), NE * labelscalefactor,zzttqq);
label("$b$", (1.9,1.4), NE * labelscalefactor,zzttqq);
label("$f$", (-3.08,4.92), NE * labelscalefactor);
dot((-3.36710245870117,-1.4127201251143038),linewidth(4pt) + dotstyle);
label("$D$", (-3.28,-1.26), NE * labelscalefactor);
dot((-0.08,-1.48),linewidth(4pt) + dotstyle);
label("$E$", (0,-1.32), NE * labelscalefactor);
label("$g$", (-1.96,1.02), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/2/7/4/274d0dbc781e3bc128d6477a45f887b2ed13f17b.png)



Using Internal Angle Bisector Theorem in



Using Pythagorean Theorem in



Using Pythagorean Theorem in


Thus

Thus the closest integer is

S1 by lbh_qys
Let
be the circumcenter, then
, which indicates that
,
, and
are colinear. Therefore,
or
. However, when
,
and
coincide, and the angle is not trisected. Thus,
, and triangle
is a right-angled triangle. Consequently, the altitude divides the
angle into
and
, which implies the triangle is a right-angled triangle with angles
,
, and
. Therefore,
, and the closest integer is
.




















Q2
The sides
of a triangle satisfy the relations
and
. Then the measure of
, in degrees, is?




S2







Q3
Let
be a triangle in which
. From the vertex
, draw the altitude
to meet
at
. Assume that
and
. Then
equals?









S3
Let
.
(Pythagorean Theorem). Thus
and
(Pythagorean Theorem).




Q4
Let
be a square of side length
. Let
be points in the interiors of the sides
, respectively, such that
and
intersect at right angles. If
then find the length of
.








S4
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.58,2.26)--(-3.64,-3.22)--(1.84,-3.28)--(1.9,2.2)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.58,2.26)--(-3.64,-3.22), linewidth(2) + zzttqq);
draw((-3.64,-3.22)--(1.84,-3.28), linewidth(2) + zzttqq);
draw((1.84,-3.28)--(1.9,2.2), linewidth(2) + zzttqq);
draw((1.9,2.2)--(-3.58,2.26), linewidth(2) + zzttqq);
draw((-3.5946697742558436,0.9201606179663049)--(1.8594891123393478,-1.499994406339482), linewidth(2));
draw((xmin, 2.253640296517657*xmin + 0.49841400936201097)--(xmax, 2.253640296517657*xmax + 0.49841400936201097), linewidth(2)); /* line */
draw((0.760574548844643,2.2124754611440354)--(-1.6595804754611438,-3.2416834254511557), linewidth(2));
draw((xmin, -0.010948905109489145*xmin-1.47963503649635)--(xmax, -0.010948905109489145*xmax-1.47963503649635), linewidth(2)); /* line */
draw((xmin, 91.33333333333121*xmin + 148.3333333333298)--(xmax, 91.33333333333121*xmax + 148.3333333333298), linewidth(2)); /* line */
/* dots and labels */
dot((-3.58,2.26),dotstyle);
label("$A$", (-3.5,2.46), NE * labelscalefactor);
dot((-3.64,-3.22),dotstyle);
label("$B$", (-3.56,-3.02), NE * labelscalefactor);
dot((1.84,-3.28),dotstyle);
label("$C$", (1.92,-3.08), NE * labelscalefactor);
dot((1.9,2.2),dotstyle);
label("$D$", (1.98,2.4), NE * labelscalefactor);
dot((-3.5946697742558436,0.9201606179663049),dotstyle);
label("$E$", (-3.52,1.12), NE * labelscalefactor);
dot((1.8594891123393478,-1.499994406339482),dotstyle);
label("$F$", (1.94,-1.3), NE * labelscalefactor);
label("$j$", (-1,-0.58), NE * labelscalefactor);
dot((-1.6595804754611438,-3.2416834254511557),dotstyle);
label("$G$", (-1.58,-3.04), NE * labelscalefactor);
label("$k$", (1.74,4.92), NE * labelscalefactor);
dot((0.760574548844643,2.2124754611440354),linewidth(4pt) + dotstyle);
label("$H$", (0.84,2.38), NE * labelscalefactor);
label("$l$", (-0.76,-0.38), NE * labelscalefactor);
label("$m$", (-8.76,-1.22), NE * labelscalefactor);
label("$n$", (-1.42,4.92), NE * labelscalefactor);
dot((-1.5995804754611425,2.238316574548844),linewidth(4pt) + dotstyle);
label("$I$", (-1.52,2.4), NE * labelscalefactor);
dot((-3.620510887660651,-1.4399944063394812),linewidth(4pt) + dotstyle);
label("$J$", (-3.54,-1.28), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/c/8/c/c8c25eae8a34b902f4eb033642872f74f9afe087.png)
We rename the points as per the diagram.
Let


Then,




Thus the required length is

S4 by Mathzeus1024
Let the points
be located in the
plane. If
, then:
(i).
If
, then
(ii).
Finally,
.




If


Finally,

Q5
Let
be a point inside a triangle
with
. Let
and
be the images of
under reflection in
and
respectively. The distance between the circumcenters of triangles
and
is?












S5
Let
and
and
. Assume
then
and
. Observe that the circumcenter of
is just
. Observe that the circumcenter of
is just
. Thus the distance is just the circumradius or
.











Q6
Three circles of radii
and
units respectively touch each other externally in the place. The circumradius of the triangle formed by joining the centers of the circles is?


S6
Observe the triangle formed is a
right angled triangle thus the circumradius is
.


Q7
Given
with
, let
be midpoint of
and let
and
be points on ray
and
respectively such that
. Let
be the radius of
and
be
radius of
. If
where
are integers. Find 












radius of




S7
Let
and
.
Let
and
.
Thus,
and
.
Thus,
.
Thus,
or
.
Using LoS on
,
In
using LoS,
.
In
using LoS,
.
Thus,
.
Thus, the final answer is
.


Let


Thus,


Thus,

Thus,


Using LoS on

In


In


Thus,

Thus, the final answer is

Q8
Let
be a triangle in which
and let
be its in-centre. Suppose
. Find 





S8
Construct
from
exterior to
such that
.
Note that
is isosceles.
Let
.
Thus
and
. This means that
(as
is isosceles.
As
is isosceles,
which means that
and
.
As
.
Observe
. Thus
is a cyclic quadrilateral.
Thus
which means that
. Thus
.
.




Note that

Let

Thus




As




As

Observe


Thus




Q9
In
,
,
. Given
circles
with radius
contain
and touch
at
and
respectively. Find
.











S9
Let
be the midpoints of
respectively. Let
be the centres of
respectively.
Thus,
Similarly,
Using LoS, 
or
.
Similarly,
.





Thus,






Similarly,


This post has been edited 12 times. Last edited by SomeonecoolLovesMaths, Jan 8, 2025, 4:47 PM