The A-Humpty point; Preliminaries
by p_square, Aug 18, 2018, 12:15 PM
In this blog post I will discuss the intricacies of the
-HM point. Hopefully, by the end, many of its mysteries will be thrown into light.
The
-HM point has several nice properties: We will randomly pick one as it's definition and derive the rest.
Define the
-HM point as the foot of perpendicular from the Orthocentre
of
to the
-Median.
We will also henceforth denote the
-HM point by
.
Anyway,
Well, not exactly. But that's close enough.
Property 2:
is a cyclic quadrilateral
Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
draw(D--A--B--C--A--M); draw(B--E); draw(C--F); draw(H--X);
draw(circumcircle(A,E,F)); draw(circumcircle(D,E,F)); draw(circumcircle(B,H,C));
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330));
[/asy]](//latex.artofproblemsolving.com/7/9/9/79902d279973ec1bc3f1faa209767f5c9c71301f.png)
Let
,
and
be the altitudes of the triangle
. Let
be the midpoint of
.
Observe that
is cyclic.
We will invert at A with radius
.
As a fortunate co-incedence, By Power of Point,
. Actually, this is the only reason we inverted.
What this tells us, is that during the inversion
.
Before inversion, Points
were cyclic (Nine-point circle), and as it hath been foretold, that circles shall (usually) remain circles after inversion, so
are cyclic. 
Property 3:
is tangential to Circles
.
Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
draw(D--A--B--C--A--M); draw(B--E--M); draw(C--F--M); draw(H--X);
draw(circumcircle(A,E,F)); draw(circumcircle(D,E,F)); draw(circumcircle(B,H,C)); draw(circumcircle(A,X,B)); draw(circumcircle(A,X,C));
dot("$A$",A,dir(90)); dot("$B$",B,dir(130)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(130)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330));
[/asy]](//latex.artofproblemsolving.com/9/2/9/92976c4045df9dd3ff0349afab471804da23905c.png)
If we continue to work in the inverted diagram, what I wrote translates to
,
are tangent to Circle
This is very well known and the proof is simple angle chasing. 
Property 4: Let the tangent from
to the circumcircle of
meet
at
. The orthocentre of
is the midpoint of
.
At first this doesn't seem related to
at all! But on re-reading the relationship hopefully becomes clear. Say
is the midpoint of
and
is the foot of perpendicular from
to
.
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,T,M,P,X,Q;
A=(6,4);
B=(7,0);
C=(11,0);
M=(B+C)/2;
H=orthocenter(A,B,C);
X=foot(H,A,M);
P=(A+H)/2;
Q=(A+X)/2;
T=orthocenter(A,P,M);
draw(A--T--C--A); draw(B--A--M); draw(A--H); draw(T--Q); draw(H--X);
draw(circumcircle(A,B,C));
dot("$A$",A,dir(150)); dot("$B$",B,dir(210)); dot("$C$",C,dir(90)); dot("$M$",M,dir(60)); dot("$X$",X,dir(60)); dot("$H$",H,dir(180)); dot("$T$",T,dir(150)); dot("$P$",P,dir(180)); dot("$Q$",Q,dir(270));
[/asy]](//latex.artofproblemsolving.com/0/b/7/0b7cc6d209b1e41315d52648f52c812790b10b48.png)
Proof:
It isnot very easy to see that
. It is also well known that
.
So,
is indeed the orthocentre of
.
This further implies that
The foot of perpndicular from
will be the midpoint of the foot of perpendicular from
. i.e. 
This tells us that
is on the perpendicular bisector of
or 
Many people might recognise this as ELMO 2018/4 (I also used the same notation). Quite a few ELMO
-HM point.
Property 5: If
is a harmonic quadrilateral, then
is the reflection of
across 
Proof:
It isn't hard to see that the reflection of
across
lies on circle
. (
)
Also
. Ignoring configuration issues (which I vehemently hate generally dislike), we see that
must be the reflection of
across
. 
Property 6:
is tangent to circle 
Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,T,M,P,X,Q;
A=(6,4);
B=(7,0);
C=(11,0);
M=(B+C)/2;
H=orthocenter(A,B,C);
X=foot(H,A,M);
P=(A+H)/2;
Q=(A+X)/2;
T=orthocenter(A,P,M);
draw(A--T--C--A); draw(B--A--M); draw(A--H); draw(X--T--Q); draw(H--X);
draw(circumcircle(A,B,C)); draw(circumcircle(B,H,C));
dot("$A$",A,dir(150)); dot("$B$",B,dir(210)); dot("$C$",C,dir(90)); dot("$M$",M,dir(60)); dot("$X$",X,dir(60)); dot("$H$",H,dir(180)); dot("$T$",T,dir(150)); dot("$P$",P,dir(180)); dot("$Q$",Q,dir(270));
[/asy]](//latex.artofproblemsolving.com/5/5/0/550509db41606c8898975537769e088cc2a52e10.png)
The power of
with respect to circles
and
is the same (
)
Thus, The length of the tangent is same, and we have already proved that
.
This finishes the proof
Property 7:
are cyclic
Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,T,M,P,X,Q,L,O;
A=(6,4);
B=(7,0);
C=(11,0);
M=(B+C)/2;
H=orthocenter(A,B,C);
X=foot(H,A,M);
P=(A+H)/2;
Q=(A+X)/2;
T=orthocenter(A,P,M);
L=circumcenter(B,H,C);
O=circumcenter(A,B,C);
draw(A--T--C--A); draw(B--A--M); draw(A--H); draw(T--Q); draw(H--X--T); draw(L--P); draw(L--M); draw(L--X);
draw(circumcircle(A,B,C)); draw(circumcircle(B,H,C)); draw(circumcircle(T,M,L));
dot("$A$",A,dir(150)); dot("$B$",B,dir(210)); dot("$C$",C,dir(90)); dot("$M$",M,dir(60)); dot("$X$",X,dir(60)); dot("$H$",H,dir(180)); dot("$T$",T,dir(150)); dot("$P$",P,dir(180)); dot("$Q$",Q,dir(270)); dot("$O_A$",L,dir(320));
[/asy]](//latex.artofproblemsolving.com/a/6/a/a6a601613e8f72bc4a97f27aa6150a2911d42787.png)
Like many a geometry problem, this actually becomes a lot easier if you just add in one extra point.
Clearly
lies on the perpendicular bisector of
, so
.
By property 6,
Also, Since
is a parallelogram.
This tells us that
(Property 4) i.e.
= 90. 
As a corollary, note that
is an isosceles trapezium.
Property 8: Duality;
is the
-HM point of 
Proof:
Property 3 (Use Power of Point from
) finishes this off immediately.
However look at Property 2.
which is just another way of writing Property 2, with the roles of
and
switched.
orthocentre of
is the orthocentre of
. 
Property 9:
lies on the
-apollonian circle
Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
draw(D--A--B--C--A--M); draw(B--E); draw(C--F); draw(H--X);
draw(circumcircle(A,E,F)); draw(circumcircle(D,E,F)); draw(circumcircle(B,H,C));
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330));
[/asy]](//latex.artofproblemsolving.com/e/d/c/edc543faa8d6f096bcdf6cc30720f3053dbd8a3d.png)
It is well known that upon inversion at
, the
-apollonian circle becomes the perpendicular bisector of the new
.
After performing
inversion
whereas
. Since
,
lies on the perpendicular bisector of
. 
Here is a diagram encompassing most of these properties.
![[asy]
import olympiad;
unitsize(30);
pair Z,A,B,C,D,E,F,H,T,P,Q,X,M,N,O,L,Y;
A=(6,4); B=(7,0); C=(11,0);
M=(B+C)/2;
D=foot(A,B,C);
E=foot(B,C,A);
F=foot(C,A,B);
H=orthocenter(A,B,C);
dot(H);
X=foot(H,A,M);
P=(A+H)/2;
T=orthocenter(A,P,M);
Q=foot(P,A,M);
O=circumcenter(A,B,C);
L=circumcenter(H,B,C);
N=orthocenter(B,C,X);
Z=foot(M,A,T);
draw(B--A--C--B); draw(C--F, heavygreen); draw(E--H, heavygreen); draw(A--H, heavygreen); draw(A--M, heavygreen); draw(C--H, heavygreen); draw(D--B--F, heavygreen); draw(A--T--Q, red); draw(M--Z, red); draw(A--D, dashed+red); draw(T--X--L--M,blue); draw(L--P, blue); draw(T--P, dashed+blue); draw(T--B, red); draw(F--M--E,dotted+purple);
draw(circumcircle(A,B,C),dashed+lightred); draw(circumcircle(H,B,C),blue); draw(circumcircle(L,M,T),blue);
draw(circumcircle(X, H, D),dotted+lightred); draw(circumcircle(X, B, F),dotted+lightred); draw(circumcircle(X, C, E),dotted+lightred); draw(circumcircle(A,X,C),heavycyan); draw(circumcircle(A,X,B),heavycyan); draw(circle(T,4.4),orange); draw(circumcircle(A,E,F),dotted+purple);
dot("$A$",A, dir(150)); dot("$B$",B,dir(215)); dot("$C$",C, dir(270)); dot("$X$",X,dir(30)); dot("$M$",M,dir(60)); dot("$T$",T,dir(150)); dot("$D$",D,dir(225)); dot("$E$",E,dir(0)); dot("$F$",F,dir(270)); dot("$P$",P,dir(45)); dot("$Q$",Q,dir(45)); dot("$O_A$",L,dir(310));
[/asy]](//latex.artofproblemsolving.com/5/0/7/507425db1454a70c6177233601d73589f5261343.png)

For those interested, @anantmudgal09's handout which can be found here also deals with the A-HM point. @Rmo was also helpful in property 7.

The

Define the




We will also henceforth denote the


Anyway,
p_square wrote:
Property 1: X is the foot of perpendicular from the Orthocentre
of Triangle
to the
-Median.



Property 2:

Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
draw(D--A--B--C--A--M); draw(B--E); draw(C--F); draw(H--X);
draw(circumcircle(A,E,F)); draw(circumcircle(D,E,F)); draw(circumcircle(B,H,C));
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330));
[/asy]](http://latex.artofproblemsolving.com/7/9/9/79902d279973ec1bc3f1faa209767f5c9c71301f.png)
Let






Observe that

We will invert at A with radius

As a fortunate co-incedence, By Power of Point,

What this tells us, is that during the inversion

Before inversion, Points



Property 3:


Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
draw(D--A--B--C--A--M); draw(B--E--M); draw(C--F--M); draw(H--X);
draw(circumcircle(A,E,F)); draw(circumcircle(D,E,F)); draw(circumcircle(B,H,C)); draw(circumcircle(A,X,B)); draw(circumcircle(A,X,C));
dot("$A$",A,dir(90)); dot("$B$",B,dir(130)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(130)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330));
[/asy]](http://latex.artofproblemsolving.com/9/2/9/92976c4045df9dd3ff0349afab471804da23905c.png)
If we continue to work in the inverted diagram, what I wrote translates to
p_square in a complicated manner wrote:




Property 4: Let the tangent from






At first this doesn't seem related to






p_square almost wrote:

![[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,T,M,P,X,Q;
A=(6,4);
B=(7,0);
C=(11,0);
M=(B+C)/2;
H=orthocenter(A,B,C);
X=foot(H,A,M);
P=(A+H)/2;
Q=(A+X)/2;
T=orthocenter(A,P,M);
draw(A--T--C--A); draw(B--A--M); draw(A--H); draw(T--Q); draw(H--X);
draw(circumcircle(A,B,C));
dot("$A$",A,dir(150)); dot("$B$",B,dir(210)); dot("$C$",C,dir(90)); dot("$M$",M,dir(60)); dot("$X$",X,dir(60)); dot("$H$",H,dir(180)); dot("$T$",T,dir(150)); dot("$P$",P,dir(180)); dot("$Q$",Q,dir(270));
[/asy]](http://latex.artofproblemsolving.com/0/b/7/0b7cc6d209b1e41315d52648f52c812790b10b48.png)
Proof:
It is


So,


This further implies that

The foot of perpndicular from



This tells us that



Many people might recognise this as ELMO 2018/4 (I also used the same notation). Quite a few ELMO
They make for nice practice and some are very elegant properties. E.g. ELMO 2014/5, ELMO SL 2013/3
geometry questions become much simpler if one knows about the 
Property 5: If




Proof:
It isn't hard to see that the reflection of




Also





Property 6:


Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,T,M,P,X,Q;
A=(6,4);
B=(7,0);
C=(11,0);
M=(B+C)/2;
H=orthocenter(A,B,C);
X=foot(H,A,M);
P=(A+H)/2;
Q=(A+X)/2;
T=orthocenter(A,P,M);
draw(A--T--C--A); draw(B--A--M); draw(A--H); draw(X--T--Q); draw(H--X);
draw(circumcircle(A,B,C)); draw(circumcircle(B,H,C));
dot("$A$",A,dir(150)); dot("$B$",B,dir(210)); dot("$C$",C,dir(90)); dot("$M$",M,dir(60)); dot("$X$",X,dir(60)); dot("$H$",H,dir(180)); dot("$T$",T,dir(150)); dot("$P$",P,dir(180)); dot("$Q$",Q,dir(270));
[/asy]](http://latex.artofproblemsolving.com/5/5/0/550509db41606c8898975537769e088cc2a52e10.png)
The power of




Thus, The length of the tangent is same, and we have already proved that

This finishes the proof

Property 7:

Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,T,M,P,X,Q,L,O;
A=(6,4);
B=(7,0);
C=(11,0);
M=(B+C)/2;
H=orthocenter(A,B,C);
X=foot(H,A,M);
P=(A+H)/2;
Q=(A+X)/2;
T=orthocenter(A,P,M);
L=circumcenter(B,H,C);
O=circumcenter(A,B,C);
draw(A--T--C--A); draw(B--A--M); draw(A--H); draw(T--Q); draw(H--X--T); draw(L--P); draw(L--M); draw(L--X);
draw(circumcircle(A,B,C)); draw(circumcircle(B,H,C)); draw(circumcircle(T,M,L));
dot("$A$",A,dir(150)); dot("$B$",B,dir(210)); dot("$C$",C,dir(90)); dot("$M$",M,dir(60)); dot("$X$",X,dir(60)); dot("$H$",H,dir(180)); dot("$T$",T,dir(150)); dot("$P$",P,dir(180)); dot("$Q$",Q,dir(270)); dot("$O_A$",L,dir(320));
[/asy]](http://latex.artofproblemsolving.com/a/6/a/a6a601613e8f72bc4a97f27aa6150a2911d42787.png)
Like many a geometry problem, this actually becomes a lot easier if you just add in one extra point.
p_square almost wrote:
Let
be the circumcentre of
.
are cyclic with diametre 







By property 6,

Also, Since

This tells us that



As a corollary, note that

Property 8: Duality;



Proof:
Property 3 (Use Power of Point from

However look at Property 2.
p_square almost wrote:
Let N be the point where the perpendicular from
to
meets circle
. Then
is the orthocentre of 











Property 9:


Proof:
![[asy]
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
draw(D--A--B--C--A--M); draw(B--E); draw(C--F); draw(H--X);
draw(circumcircle(A,E,F)); draw(circumcircle(D,E,F)); draw(circumcircle(B,H,C));
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330));
[/asy]](http://latex.artofproblemsolving.com/e/d/c/edc543faa8d6f096bcdf6cc30720f3053dbd8a3d.png)
It is well known that upon inversion at



After performing







Here is a diagram encompassing most of these properties.
![[asy]
import olympiad;
unitsize(30);
pair Z,A,B,C,D,E,F,H,T,P,Q,X,M,N,O,L,Y;
A=(6,4); B=(7,0); C=(11,0);
M=(B+C)/2;
D=foot(A,B,C);
E=foot(B,C,A);
F=foot(C,A,B);
H=orthocenter(A,B,C);
dot(H);
X=foot(H,A,M);
P=(A+H)/2;
T=orthocenter(A,P,M);
Q=foot(P,A,M);
O=circumcenter(A,B,C);
L=circumcenter(H,B,C);
N=orthocenter(B,C,X);
Z=foot(M,A,T);
draw(B--A--C--B); draw(C--F, heavygreen); draw(E--H, heavygreen); draw(A--H, heavygreen); draw(A--M, heavygreen); draw(C--H, heavygreen); draw(D--B--F, heavygreen); draw(A--T--Q, red); draw(M--Z, red); draw(A--D, dashed+red); draw(T--X--L--M,blue); draw(L--P, blue); draw(T--P, dashed+blue); draw(T--B, red); draw(F--M--E,dotted+purple);
draw(circumcircle(A,B,C),dashed+lightred); draw(circumcircle(H,B,C),blue); draw(circumcircle(L,M,T),blue);
draw(circumcircle(X, H, D),dotted+lightred); draw(circumcircle(X, B, F),dotted+lightred); draw(circumcircle(X, C, E),dotted+lightred); draw(circumcircle(A,X,C),heavycyan); draw(circumcircle(A,X,B),heavycyan); draw(circle(T,4.4),orange); draw(circumcircle(A,E,F),dotted+purple);
dot("$A$",A, dir(150)); dot("$B$",B,dir(215)); dot("$C$",C, dir(270)); dot("$X$",X,dir(30)); dot("$M$",M,dir(60)); dot("$T$",T,dir(150)); dot("$D$",D,dir(225)); dot("$E$",E,dir(0)); dot("$F$",F,dir(270)); dot("$P$",P,dir(45)); dot("$Q$",Q,dir(45)); dot("$O_A$",L,dir(310));
[/asy]](http://latex.artofproblemsolving.com/5/0/7/507425db1454a70c6177233601d73589f5261343.png)

For those interested, @anantmudgal09's handout which can be found here also deals with the A-HM point. @Rmo was also helpful in property 7.

This post has been edited 3 times. Last edited by p_square, Aug 19, 2018, 11:16 AM