The A-Humpty point; Inversion
by p_square, Sep 9, 2018, 3:29 PM
It isn't a well known saying, that "When in doubt, invert". And there is a reason for that. It is not recommended to try and invert around points randomly without regard for rhyme or reason.
However it is generally a good idea to invert around points through which a lot of circles pass.
Inversion possesses the power to turn all these cruel complicated circles into simple lines.
Looking at the complete diagram of the
-HM point, it can be seen that many circles pass through the
-HM point. In this blog post I will invert around the
-HM point with arbitrary radius. This turns out even better than expected.
Also, since I am not comfortable inverting the large complicated diagram at once, I shall invert it in many stages.
Stage 1;
Take
as an arbitrary triangle. We see that
is the intersection of tangents from
to the circumcircle of
.
is the second intersection point of
and the circumcircle of
.
Things look quite good at this point. We have a harmonic quadrilateral, with a tangent intersection point marked.
![[asy]
defaultpen(fontsize(9pt));
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3;
B=(-0.766,0.643); X=(-0.174,0.985); C=(0.766,0.643);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
draw(M--A--B--C--A);
draw(circumcircle(X,C,B));
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270));
[/asy]](//latex.artofproblemsolving.com/7/9/f/79f2739ec296c98a4ccd28717e67de873c986f13.png)
The next stage will be dealing with
. We definitely cannot define it in the usual manner as the orthocentre of triangle
. All those perpendicular lines will become orthogonal circles, a not-so-nice constraint.
Stage 2;
The thing to notice over here, is that
are much better characterized as lying on circles
in the original figure than foot of altitudes from
to
.
and
will simply become the intersection points of
with circle
.
Now, instead of thinking of
as
intersection
in the original figure, we can simply remember property 2.
goes to
intersection
.
We now have enough points for interesting things to start happening in the figure and indeed they do
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen);
draw(circumcircle(X,C,B)); draw(circumcircle(A,X,B),blue); draw(circumcircle(A,X,C),blue); draw(circumcircle(E,F,B), heavygreen);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);
[/asy]](//latex.artofproblemsolving.com/e/a/d/eadbe0389af81152f4f2ce46b16c580a6da8965e.png)
is the center of a circle passing through
.
We can prove this by simple angle chasing.
.
We have
.
Also, we can redefine
as the points on
such that 
This diagram is basically USAMO 2007/2
Stage 3:
clearly becomes the intersection of circle
and line
.
also lies on the circle
.
Observe that
.
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
x6 = foot(O,M,H); D = 2*x6-M;
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(M--H, red); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen);
draw(circumcircle(X,C,B)); draw(circumcircle(E,F,B),heavygreen); draw(circumcircle(A,X,H),red); draw(circumcircle(F,X,C),dashed+heavycyan); draw(circumcircle(E,X,B),dashed+heavycyan); draw(circumcircle(A,X,C),dashed+orange);draw(circumcircle(A,X,B),dashed+orange);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);dot("$D$",D);
[/asy]](//latex.artofproblemsolving.com/c/d/1/cd1883acca3638244c031e2cd03b55cbd1f56d09.png)
From the usual definitions of
we see that circle
is orthogonal to circle
, circle
is orthogonal to circle
and circle
is orthogonal to
.
Stage 4:
.
being the circumcentre of
clearly becomes
reflected across
or the M-Humpty point of MBC.
After inversion,
is an isosceles trapezium.
was the circumcenter of
, so it becomes
reflected across
.
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,T,P,Oa,x8,x9;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
x6 = foot(O,M,H); D = 2*x6-M;
x7 = foot(X,B,C); Oa = 2*x7 - X;
x8 = foot(X,E,F); P=2*x8-X;
x9 = foot(O,M,P); T=2*x9-M;
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(M--H, red); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen); draw(M--P,orange);
draw(circumcircle(X,C,B)); draw(circumcircle(E,F,B),heavygreen); draw(circumcircle(A,X,H),red);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);dot("$D$",D);dot("$T$",T);dot("$P$",P);dot("$O_a$",Oa);
[/asy]](//latex.artofproblemsolving.com/a/e/a/aeab2385c301c2296e9fd829e13545a0ba41bbce.png)
An interesting thing to note is that the
-HM point configuration is partially self-inversive.
Since
is the midpoint of
and
, we see that
and
are perpendiculars to
.
This further implies that
is the
-HM point of triangle
.
For now, let us hop back to original diagram
We will prove a quick result or
that were not touched upon in the previous entry.
Result
:
and
concur (Say at
).
The simplest way to prove this is to note that
are all circles. Since we know that radical axis of
circles taken pairwise concur at a point, we are done.
![[asy]
defaultpen(fontsize(9pt));
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X,Y;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
Y=extension(E,F,X,H);
draw(D--A--B--C--A--M); draw(E--Y--X, blue); draw(C--F); draw(B--E); draw(Y--C,blue);
draw(circumcircle(A,E,F),heavygreen); draw(circumcircle(D,E,F),heavygreen); draw(circumcircle(M,H,X),heavygreen);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330)); dot("$Y$",Y);
[/asy]](//latex.artofproblemsolving.com/c/4/3/c439c069356fdbed4b7b0becae03c71917294b6b.png)
Result
:
is the Miquel point of quadrilateral
(Yes, that order).
The proof of this is extremely short.
Simply note that since
intersect at
, and as we know,
and
are cyclic.
This further implies that
and
are cyclic.
![[asy]
defaultpen(fontsize(9pt));
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X,Y;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
Y=extension(E,F,X,H);
draw(D--A--B--C--A--M); draw(E--Y--X, orange); draw(Y--C,orange); draw(B--E--F--C--B, heavygreen);
draw(circumcircle(A,E,F),blue); draw(circumcircle(B,H,C),blue); draw(circumcircle(Y,B,X),heavycyan); draw(circumcircle(Y,C,X),heavycyan);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330)); dot("$Y$",Y);
[/asy]](//latex.artofproblemsolving.com/5/6/8/5684f2ddf5a7a41f5ade297d2dc03dbfb2187456.png)
These two are actually well worth adding to our original figure.
These
facts shall prove to be neat in the inverted diagram. In fact
plays a very important role.
Circles
,
, meet at the points on
. i.e.
is the radical axis of these two circles.
is the orthocentre of
.
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,x8,x9,Y,x10,T,P,Oa,x11,Y;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
x6 = foot(O,M,H); D = 2*x6-M;
x7 = foot(O,X,H); Y = 2*x7 - X;
x10 = foot(X,B,C); Oa = 2*x10 - X;
x8 = foot(X,E,F); P=2*x8-X;
x9 = foot(O,M,P); T=2*x9-M;
x11=foot(O,X,H); Y=2*x11-X;
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(M--H, red); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen); draw(B--E,blue); draw(C--F,blue); draw(A--D,blue); draw(X--H,blue);
draw(circumcircle(X,C,B)); draw(circumcircle(E,F,B),heavygreen); draw(circumcircle(A,X,H),red);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);dot("$D$",D);dot("$Y$",Y);
[/asy]](//latex.artofproblemsolving.com/d/2/c/d2c766eaa2202241cd304d3dae3a5f488c7d7e81.png)
Now, we are ready for the grand finale, Presenting IMO 2015 P3.
We invert at an HM point configuration to arrive at the solution.
The diagram looks like this:
![[asy]
defaultpen(fontsize(9pt));
import math; import olympiad;
unitsize(70);
pair A,B,C,H,O,Q,K,F,M,x1;
A = dir(70); B = dir(210); C = dir(330);
O = circumcenter(A, B, C);
H = orthocenter(A, B, C);
M =(B+C)/2;
F = foot(A, B, C);
Q=foot(A,M,H);
K=OP(CP((H+Q)/2,H),circumcircle(A,B,C));
draw(A--B--C--A); draw(H--A--Q--H--K--Q, red); draw(A--M--H--F,blue);
draw(circumcircle(A,B,C),heavygreen); draw(circumcircle(K,F,M),heavycyan); draw(circumcircle(K,Q,H),heavycyan);
dot("$A$",A); dot("$B$",B); dot("$C$",C); dot("$H$",H); dot("$M$",M); dot("$F$",F); dot("$Q$",Q);dot("$K$",K);
[/asy]](//latex.artofproblemsolving.com/8/5/b/85bc5c671073b66df8bea0d2ac13c9e322851598.png)
Since I drew the diagram, I leave the proof as an exercise to the reader
First of all, observe that
and
are the
-HM point of triangle
respectively.
Let us invert the figure about
.
After inversion, the diagram appears like this:
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,x8,x9,Y,W,K,x10,x11;
B=dir(215); X=dir(160); C=dir(325);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
x8 = -1*M; x9 = foot(O,x8,A);
D = 2*x9-x8;
x7 = (A-M)*dir(270)+A; K = extension(A,x7,B,C);
x6 = foot(O,x8,K); W = 2*x6-x8;
x10 = foot(O,D,K); Y = 2*x10-D;
H = extension(D,M,C,B);
draw(X--A--B--C--A); draw(H--D--A--K--H--A); draw(A--H--D, red); draw(X--A--K,blue);
draw(circumcircle(X,C,B),heavygreen);
dot("$H$",A); dot("$B$",B); dot("$C$",C); dot("$Q$",X); dot("$M$",M); dot("$F$",D); dot("$K$",K); dot("$A$",H);
[/asy]](//latex.artofproblemsolving.com/7/4/9/74911f55222a026ca34f4857068e3d5c7c6927ee.png)
Now, let us erase a few unimportant points that aren't doing much and add in our very own set of points
Define
as the point diametrically opposite
in circle
.
We know that
(Stage
). This means that
are collinear.
We can get rid of
by re-defining
as the second point of intersection between
and circle
.
Let
be the second intersection of
with circle
.
Let
be the second intersection of
with circle
.
We can also erase
from the figure.
We are left with
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,x8,x9,Y,W,K,x10,x11;
B=dir(215); X=dir(160); C=dir(325);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
x8 = -1*M; x9 = foot(O,x8,A);
D = 2*x9-x8;
x7 = (A-M)*dir(270)+A; K = extension(A,x7,B,C);
x6 = foot(O,x8,K); W = 2*x6-x8;
x10 = foot(O,D,K); Y = 2*x10-D;
draw(A--B--C--A--M--B--C--M); draw(A--W--M--A--K--A--x8, red); draw(x8--K--D--M, blue);
draw(circumcircle(M,B,C),heavygreen); draw(circumcircle(A,K,M),heavycyan);
dot("$H$",A); dot("$B$",B); dot("$C$",C); dot("$M$",M); dot("$F$",D); dot("$K$",K); dot("$W$",x8);
dot("$L$",W); dot("$Y$",Y);
[/asy]](//latex.artofproblemsolving.com/2/7/4/2741c8b22133c8d05b309c3ae5aaa0f4c49a7e8e.png)
implies that
are collinear.
Also,
.
are cyclic
We end by noting that
.
This means that
is tangent to circle
.
Note: IMO 2015 P3 is actually even easier to solve via inversion at
which is the
point of triangle
. Readers are 'encouraged' to also try solving it that way.
Credits go to @anantmudgal09 for telling me that IMO 2015 P3 could be done via inversion.
However it is generally a good idea to invert around points through which a lot of circles pass.
Inversion possesses the power to turn all these cruel complicated circles into simple lines.
Looking at the complete diagram of the



Also, since I am not comfortable inverting the large complicated diagram at once, I shall invert it in many stages.
Stage 1;

Take







Things look quite good at this point. We have a harmonic quadrilateral, with a tangent intersection point marked.
![[asy]
defaultpen(fontsize(9pt));
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3;
B=(-0.766,0.643); X=(-0.174,0.985); C=(0.766,0.643);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
draw(M--A--B--C--A);
draw(circumcircle(X,C,B));
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270));
[/asy]](http://latex.artofproblemsolving.com/7/9/f/79f2739ec296c98a4ccd28717e67de873c986f13.png)
The next stage will be dealing with


Stage 2;

The thing to notice over here, is that








Now, instead of thinking of






We now have enough points for interesting things to start happening in the figure and indeed they do
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen);
draw(circumcircle(X,C,B)); draw(circumcircle(A,X,B),blue); draw(circumcircle(A,X,C),blue); draw(circumcircle(E,F,B), heavygreen);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);
[/asy]](http://latex.artofproblemsolving.com/e/a/d/eadbe0389af81152f4f2ce46b16c580a6da8965e.png)
Interesting Property wrote:



We have

Also, we can redefine



This diagram is basically USAMO 2007/2
Stage 3:






Observe that

![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
x6 = foot(O,M,H); D = 2*x6-M;
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(M--H, red); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen);
draw(circumcircle(X,C,B)); draw(circumcircle(E,F,B),heavygreen); draw(circumcircle(A,X,H),red); draw(circumcircle(F,X,C),dashed+heavycyan); draw(circumcircle(E,X,B),dashed+heavycyan); draw(circumcircle(A,X,C),dashed+orange);draw(circumcircle(A,X,B),dashed+orange);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);dot("$D$",D);
[/asy]](http://latex.artofproblemsolving.com/c/d/1/cd1883acca3638244c031e2cd03b55cbd1f56d09.png)
From the usual definitions of







Stage 4:





After inversion,





![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,T,P,Oa,x8,x9;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
x6 = foot(O,M,H); D = 2*x6-M;
x7 = foot(X,B,C); Oa = 2*x7 - X;
x8 = foot(X,E,F); P=2*x8-X;
x9 = foot(O,M,P); T=2*x9-M;
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(M--H, red); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen); draw(M--P,orange);
draw(circumcircle(X,C,B)); draw(circumcircle(E,F,B),heavygreen); draw(circumcircle(A,X,H),red);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);dot("$D$",D);dot("$T$",T);dot("$P$",P);dot("$O_a$",Oa);
[/asy]](http://latex.artofproblemsolving.com/a/e/a/aeab2385c301c2296e9fd829e13545a0ba41bbce.png)
An interesting thing to note is that the

Since






This further implies that



For now, let us hop back to original diagram
We will prove a quick result or

Result




The simplest way to prove this is to note that


![[asy]
defaultpen(fontsize(9pt));
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X,Y;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
Y=extension(E,F,X,H);
draw(D--A--B--C--A--M); draw(E--Y--X, blue); draw(C--F); draw(B--E); draw(Y--C,blue);
draw(circumcircle(A,E,F),heavygreen); draw(circumcircle(D,E,F),heavygreen); draw(circumcircle(M,H,X),heavygreen);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330)); dot("$Y$",Y);
[/asy]](http://latex.artofproblemsolving.com/c/4/3/c439c069356fdbed4b7b0becae03c71917294b6b.png)
Result



The proof of this is extremely short.
Simply note that since




This further implies that


![[asy]
defaultpen(fontsize(9pt));
import olympiad;
unitsize(30);
pair A,B,C,D,E,F,H,M,X,Y;
B=(0,0); A=(1,4); C=(5,0);
D=foot(A,B,C);
E=foot(B,A,C);
F=foot(C,A,B);
H=orthocenter(A,B,C);
M=(B+C)/2;
X = foot(H,A,M);
Y=extension(E,F,X,H);
draw(D--A--B--C--A--M); draw(E--Y--X, orange); draw(Y--C,orange); draw(B--E--F--C--B, heavygreen);
draw(circumcircle(A,E,F),blue); draw(circumcircle(B,H,C),blue); draw(circumcircle(Y,B,X),heavycyan); draw(circumcircle(Y,C,X),heavycyan);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$D$",D,dir(250)); dot("$E$",E,dir(60)); dot("$F$",F,dir(210)); dot("$H$",H,dir(150)); dot("$M$",M,dir(300)); dot("$X$",X,dir(330)); dot("$Y$",Y);
[/asy]](http://latex.artofproblemsolving.com/5/6/8/5684f2ddf5a7a41f5ade297d2dc03dbfb2187456.png)
These two are actually well worth adding to our original figure.
These


Circles






![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,x8,x9,Y,x10,T,P,Oa,x11,Y;
B=dir(150); X=dir(100); C=dir(30);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
H=extension(F,E,B,C);
x6 = foot(O,M,H); D = 2*x6-M;
x7 = foot(O,X,H); Y = 2*x7 - X;
x10 = foot(X,B,C); Oa = 2*x10 - X;
x8 = foot(X,E,F); P=2*x8-X;
x9 = foot(O,M,P); T=2*x9-M;
x11=foot(O,X,H); Y=2*x11-X;
draw(M--A--B--C--A); draw(E--M--F--H--C); draw(M--H, red); draw(C--A--B,heavygreen); draw(F--E--C--B--F,heavygreen); draw(B--E,blue); draw(C--F,blue); draw(A--D,blue); draw(X--H,blue);
draw(circumcircle(X,C,B)); draw(circumcircle(E,F,B),heavygreen); draw(circumcircle(A,X,H),red);
dot("$A$",A,dir(90)); dot("$B$",B,dir(150)); dot("$C$",C,dir(60)); dot("$X$",X,dir(90)); dot("$M$",M,dir(270)); dot("$E$",E); dot("$F$",F);dot("$H$",H);dot("$D$",D);dot("$Y$",Y);
[/asy]](http://latex.artofproblemsolving.com/d/2/c/d2c766eaa2202241cd304d3dae3a5f488c7d7e81.png)
Now, we are ready for the grand finale, Presenting IMO 2015 P3.
We invert at an HM point configuration to arrive at the solution.
IMO 2015/3 wrote:
Let
be an acute triangle with
. Let
be its cirumcircle,
its orthocenter, and
the foot of the altitude from
. Let
be the midpoint of
. Let
be the point on
such that
and let
be the point on
such that
. Assume that the points
,
,
,
and
are all different and lie on
in this order.
Prove that the circumcircles of triangles
and
are tangent to each other.




















Prove that the circumcircles of triangles


The diagram looks like this:
![[asy]
defaultpen(fontsize(9pt));
import math; import olympiad;
unitsize(70);
pair A,B,C,H,O,Q,K,F,M,x1;
A = dir(70); B = dir(210); C = dir(330);
O = circumcenter(A, B, C);
H = orthocenter(A, B, C);
M =(B+C)/2;
F = foot(A, B, C);
Q=foot(A,M,H);
K=OP(CP((H+Q)/2,H),circumcircle(A,B,C));
draw(A--B--C--A); draw(H--A--Q--H--K--Q, red); draw(A--M--H--F,blue);
draw(circumcircle(A,B,C),heavygreen); draw(circumcircle(K,F,M),heavycyan); draw(circumcircle(K,Q,H),heavycyan);
dot("$A$",A); dot("$B$",B); dot("$C$",C); dot("$H$",H); dot("$M$",M); dot("$F$",F); dot("$Q$",Q);dot("$K$",K);
[/asy]](http://latex.artofproblemsolving.com/8/5/b/85bc5c671073b66df8bea0d2ac13c9e322851598.png)
First of all, observe that




Let us invert the figure about

After inversion, the diagram appears like this:
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,x8,x9,Y,W,K,x10,x11;
B=dir(215); X=dir(160); C=dir(325);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
x8 = -1*M; x9 = foot(O,x8,A);
D = 2*x9-x8;
x7 = (A-M)*dir(270)+A; K = extension(A,x7,B,C);
x6 = foot(O,x8,K); W = 2*x6-x8;
x10 = foot(O,D,K); Y = 2*x10-D;
H = extension(D,M,C,B);
draw(X--A--B--C--A); draw(H--D--A--K--H--A); draw(A--H--D, red); draw(X--A--K,blue);
draw(circumcircle(X,C,B),heavygreen);
dot("$H$",A); dot("$B$",B); dot("$C$",C); dot("$Q$",X); dot("$M$",M); dot("$F$",D); dot("$K$",K); dot("$A$",H);
[/asy]](http://latex.artofproblemsolving.com/7/4/9/74911f55222a026ca34f4857068e3d5c7c6927ee.png)
Now, let us erase a few unimportant points that aren't doing much and add in our very own set of points
Define



We know that



We can get rid of




Let



Let



We can also erase

We are left with
![[asy]
defaultpen(fontsize(9pt));
import math;
import olympiad;
unitsize(50);
pair A,B,C,M,X,O,x1,x2,x3,E,F,H,x4,x5,x6,x7,D,x8,x9,Y,W,K,x10,x11;
B=dir(215); X=dir(160); C=dir(325);
O=circumcenter(X,B,C);
A=(-1/((B+C)/2-O))+O;
x1=orthocenter(X,B,C); x2=foot(x1,X,((B+C)/2)); x3 = foot(x2,B,C); M = 2*x3-x2;
x4=foot(A,M,C); E=2*x4-C; x5=foot(A,M,B); F=2*x5-B;
x8 = -1*M; x9 = foot(O,x8,A);
D = 2*x9-x8;
x7 = (A-M)*dir(270)+A; K = extension(A,x7,B,C);
x6 = foot(O,x8,K); W = 2*x6-x8;
x10 = foot(O,D,K); Y = 2*x10-D;
draw(A--B--C--A--M--B--C--M); draw(A--W--M--A--K--A--x8, red); draw(x8--K--D--M, blue);
draw(circumcircle(M,B,C),heavygreen); draw(circumcircle(A,K,M),heavycyan);
dot("$H$",A); dot("$B$",B); dot("$C$",C); dot("$M$",M); dot("$F$",D); dot("$K$",K); dot("$W$",x8);
dot("$L$",W); dot("$Y$",Y);
[/asy]](http://latex.artofproblemsolving.com/2/7/4/2741c8b22133c8d05b309c3ae5aaa0f4c49a7e8e.png)


Also,


We end by noting that

This means that


Note: IMO 2015 P3 is actually even easier to solve via inversion at



Credits go to @anantmudgal09 for telling me that IMO 2015 P3 could be done via inversion.

This post has been edited 6 times. Last edited by p_square, Feb 25, 2019, 11:19 AM