Y by lenhathoang1998, Adventure10
Find the maximum of
![\[P=\frac{x^3y^4z^3}{(x^4+y^4)(xy+z^2)^3}+\frac{y^3z^4x^3}{(y^4+z^4)(yz+x^2)^3}+\frac{z^3x^4y^3}{(z^4+x^4)(zx+y^2)^3}\]](//latex.artofproblemsolving.com/d/a/b/dab499cce8e03b239d328604cc6506081ea62bae.png)
where
are positive real numbers.
![\[P=\frac{x^3y^4z^3}{(x^4+y^4)(xy+z^2)^3}+\frac{y^3z^4x^3}{(y^4+z^4)(yz+x^2)^3}+\frac{z^3x^4y^3}{(z^4+x^4)(zx+y^2)^3}\]](http://latex.artofproblemsolving.com/d/a/b/dab499cce8e03b239d328604cc6506081ea62bae.png)
where

This post has been edited 2 times. Last edited by vutuanhien, Jan 4, 2014, 3:58 PM
Join our FREE webinar on May 1st to learn about managing anxiety.
\[\Rightarrow \[\frac{a^2+a}{a^4+1}+\frac{b^2+b}{b^4+1}+\frac{c^2+c}{c^4+1}\leq \frac{3}{2}\sum \frac{a+1}{a^2+a+1}\leq 3 (2)\]
\[\Rightarrow \[\frac{a^2+a}{a^4+1}+\frac{b^2+b}{b^4+1}+\frac{c^2+c}{c^4+1}\leq \frac{3}{2}\sum \frac{a+1}{a^2+a+1}\leq 3 (2)\]
\[\Rightarrow \[\frac{a^2+a}{a^4+1}+\frac{b^2+b}{b^4+1}+\frac{c^2+c}{c^4+1}\leq \frac{3}{2}\sum \frac{a+1}{a^2+a+1}\leq 3 (2)\]
Something appears to not have loaded correctly.