4 Comments
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
by
EggyLv.999, Jul 12, 2009, 3:21 AM
- Report
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
blah
Let
, and define
and
, and we need to show that
. Thus

\[\begin{align*} A_1 &=\frac{1}{1}-\frac{1}{6}\pm\cdots+\frac{1}{10k+1}-\frac{1}{10k+6}\\ &=\left(\frac{1}{1}+\frac{1}{6}+\cdots+\frac{1}{10k+6}\right)-\left(\frac{1}{3}+\frac{1}{8}+\cdots+\frac{1}{5k+3}\right),\\ A_2 &=\frac{1}{5}-\frac{1}{10}\pm\cdots+\frac{1}{10k+5}-\frac{1}{10k+10}\\ &=\left(\frac{1}{5}+\frac{1}{10}+\cdots+\frac{1}{10k+10}\right)-\left(\frac{1}{5}+\frac{1}{10}+\cdots+\frac{1}{5k+5}\right)\\ &\equiv-\left(\frac{1}{1}+\frac{1}{6}+\cdots+\frac{1}{5k+1}\right)\pmod{p},\\ B_1 &=\frac{1}{2}-\frac{1}{7}\pm\cdots+\frac{1}{10k+2}-\frac{1}{10k+7}\\ &=\left(\frac{1}{2}+\frac{1}{7}+\cdots+\frac{1}{10k+7}\right)-2\left(\frac{1}{7}+\frac{1}{17}+\cdots+\frac{1}{10k+7}\right)\\ &\equiv\left(\frac{1}{2}+\frac{1}{7}+\cdots+\frac{1}{10k+7}\right)+\left(\frac{1}{2}+\frac{1}{7}+\cdots+\frac{1}{5k+2}\right)\pmod{p},\\ B_2 &=\frac{1}{4}-\frac{1}{9}\pm\cdots+\frac{1}{10k+4}-\frac{1}{10k+9}\\ &=\left(\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{10k+9}\right)-2\left(\frac{1}{9}+\frac{1}{19}+\cdots+\frac{1}{10k+9}\right)\\ &\equiv\left(\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{10k+9}\right)+\left(\frac{1}{1}+\frac{1}{6}+\cdots+\frac{1}{5k+1}\right)\pmod{p},\\ C &=\frac{1}{3}-\frac{1}{8}\pm\cdots+\frac{1}{10k+3}-\frac{1}{10k+8}\\ &=\left(\frac{1}{3}+\frac{1}{8}+\cdots+\frac{1}{10k+8}\right)-\left(\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{5k+4}\right)\\ &\equiv\left(\frac{1}{5k+7}+\frac{1}{5k+12}+\cdots+\frac{1}{10k+7}\right)\pmod{p}. \end{align*}\]We have



\[\begin{align*} T+S\equiv B_1+C &\equiv2\left(\frac{1}{2}+\frac{1}{7}+\cdots+\frac{1}{10k+7}\right)\\ &\equiv-2\left(\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{10k+9}\right)\\ &\equiv-2(A_2+B_2)\\ &\equiv-2(S+T)\pmod{p}.\end{align*}\]The result follows.
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
easier
Edit:Proof of the thing that I said is true for all primes
Let
and define
similarly (the sums exclude
and
). Since
, we're given that
and since
while
, it suffices to show that
for all
prime. If
, then (the fact that
is important in simplifying this)
for
prime (in fact, it's true for all
, I think). Indeed,
in real life and in
are the same. So doing everything with
instead of
and using FLT,
as desired.
![\[S_1=\binom{p}{1}+\binom{p}{6}+\cdots+\binom{p}{p-5}\]](http://latex.artofproblemsolving.com/5/f/a/5fa0be0c9983a0133d4b45cca10501c1a59aa64c.png)




![\[S_1\equiv S_3\equiv S_5\pmod{p^2},\]](http://latex.artofproblemsolving.com/b/b/b/bbb39b54c102f758915648913545dd8dabff1181.png)


![\[S_2\equiv2^p-2\pmod{p^2}\]](http://latex.artofproblemsolving.com/6/6/8/66826c549e6f2bac0c9588bd9e943c23cd140e35.png)



\[\begin{align*} S_2 &= 2^p+\sum_{j=1}^{4}\omega^j(1+\omega^{2j})^p\\ &= 2^p+\sum_{j=1}^{4}(\omega^j+\omega^{3j})^p\\ &=2^p-\sum_{j=1}^{4}\left(\frac{1}{1+\omega^{j}}\right)^p \end{align*}\]Now we will show that
![\[\sum_{j=1}^{4}\left(\frac{1}{1+\omega^{j}}\right)^p \equiv 2\pmod{p^2}\]](http://latex.artofproblemsolving.com/2/d/7/2d74e8c908caa3cbe1c20b70acc48005c79ee7cc.png)


\[\begin{align*} \sum_{j=1}^{4}\left(\frac{1}{1+\omega^{j}}\right)^p &= \sum_{j=1}^{2}\left(\left(\frac{1}{1+\omega^{j}}\right)^p+\left(\frac{\omega^{j}}{1+\omega^{j}}\right)^p\right)\\ &= (1+\omega)^{p-1}+(1+\omega^2)^{p-1}\\ &= (1+\omega)^{p-1}+(1+\omega)^{1-p}\\ &= 2+\left((1+\omega)^{(p-1)/2}-\frac{1}{(1+\omega)^{(p-1)/2}}\right)^2.\end{align*}\]Now note that the symmetric sums of




![\[\left((1+g)^{(p-1)/2}-\frac{1}{(1+g)^{(p-1)/2}}\right)^2\equiv0\pmod{p^2},\]](http://latex.artofproblemsolving.com/5/d/a/5da1b9e4468e040c24b6117527c6cf34295f7ba5.png)
Edit:Proof of the thing that I said is true for all primes
We find that
is
Note that
First, this formula tells us that
, by a roots of unity filter, is an integer. Second, it implies that
for
is an algebraic integer, so
is an algebraic integer as well. But
must also be a rational number, so
, as desired.
\[\begin{align*} X=\sum_{j=1}^{4}\left(\frac{1}{1+\omega^{j}}\right)^p &= \sum_{j=1}^{2}\left(\left(\frac{1}{1+\omega^{j}}\right)^p+\left(\frac{\omega^{j}}{1+\omega^{j}}\right)^p\right)\\ &= \frac{1+\omega^p}{(1+\omega)^p}+\frac{(1+\omega)^p}{1+\omega^p}. \end{align*}\]Now note that this minus

![\[\frac{[(1+\omega)^p-(1+\omega^p)]^2}{(1+\omega)^p(1+\omega^p)}=p^2\left(\frac{[(1+\omega)^p-(1+\omega^p)]}{p}\right)^2\frac{1}{(1+\omega)^p(1+\omega^p)}=p^2Y.\]](http://latex.artofproblemsolving.com/f/7/4/f74ea39fc099d568bc2cccb7244aeaa929476d27.png)
![\[\frac{1}{1+\omega^j}=-\omega^j(1+\omega^{3j}).\]](http://latex.artofproblemsolving.com/3/f/8/3f84df50a36606edbf877a29737528026c8c3bc9.png)






This post has been edited 2 times. Last edited by math154, Feb 22, 2011, 2:38 AM
Archives





























Shouts
Submit
248 shouts
Tags
About Owner
- Posts: 2453
- Joined: May 21, 2007
Blog Stats
- Blog created: Sep 5, 2007
- Total entries: 214
- Total visits: 371405
- Total comments: 440
Search Blog