100 boxes contain fruits
by OronSH, Feb 1, 2024, 12:58 AM
I'm posting the (readable) solution here, hopefully others see the beauty of this problem outside just the ham sandwich sol.
Problem statement:
boxes contain apples, oranges and bananas. Prove that we can choose
boxes in such a way that they contain at least half of all apples, and half of all oranges and half of all bananas.
First, isolate the box
with the most apples and the box
with the most oranges (if these two are the same box, choose that box, designated both
and
and another arbitrary box
). Among the rest, assign each a label, and write their labels in a row, in decreasing order of the number of apples they contain, from left to right (ties broken arbitrarily). Below this row, write their labels in decreasing order of number of oranges they contain. Draw a square around boxes in positions
in both rows; this splits the
boxes in each row into
pairs. (In the example shown, we replace
with
for simplicity.)
![[asy]
size(10cm);
draw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle);
label("A", (1.25,1.5));
draw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle);
label("B", (5.25,1.5));
draw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle);
label("C", (9.25,1.5));
draw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle);
label("D", (13.25,1.5));
draw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle);
label("E", (17.25,1.5));
draw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
draw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle);
label("C", (1.25,-8.5));
draw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle);
label("A", (5.25,-8.5));
draw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle);
label("D", (9.25,-8.5));
draw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle);
label("E", (13.25,-8.5));
draw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle);
label("B", (17.25,-8.5));
draw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
[/asy]](//latex.artofproblemsolving.com/e/8/f/e8fb5ec6b8de630ebd412661137f3f11c5ca5db5.png)
Now we color the boxes red and blue. Start with some box colored red:
![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
draw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle);
label("B", (5.25,1.5));
draw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle);
label("C", (9.25,1.5));
draw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle);
label("D", (13.25,1.5));
draw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle);
label("E", (17.25,1.5));
draw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
draw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle);
label("C", (1.25,-8.5));
draw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle);
label("A", (5.25,-8.5));
draw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle);
label("D", (9.25,-8.5));
draw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle);
label("E", (13.25,-8.5));
draw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle);
label("B", (17.25,-8.5));
draw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
[/asy]](//latex.artofproblemsolving.com/7/d/6/7d63ba4a913833f8636768b83dde951baab409ab.png)
Next, repeat the following steps:
1. Color the box in the other row with the same letter as the last box the same color as the last box.
2. Color the other box in the pair that the last-colored box is in with the opposite color.
For example, after
turns, it will look like this:
![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
draw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle);
label("B", (5.25,1.5));
filldraw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle,lightblue);
label("C", (9.25,1.5));
filldraw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle,lightred);
label("D", (13.25,1.5));
draw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle);
label("E", (17.25,1.5));
draw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
filldraw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle,lightblue);
label("C", (1.25,-8.5));
filldraw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle,lightred);
label("A", (5.25,-8.5));
draw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle);
label("D", (9.25,-8.5));
draw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle);
label("E", (13.25,-8.5));
draw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle);
label("B", (17.25,-8.5));
draw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
draw((1.25,-0.5)--(5.25,-6.5),Arrow);
draw((1.25,-6.5)--(9.25,-0.5),Arrow);
[/asy]](//latex.artofproblemsolving.com/d/2/4/d24bb2e33ab50e49ed9077da0d081710459c5eba.png)
Repeat this process until it reaches a box that is already colored:
![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
filldraw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle,lightblue);
label("B", (5.25,1.5));
filldraw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle,lightblue);
label("C", (9.25,1.5));
filldraw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle,lightred);
label("D", (13.25,1.5));
filldraw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle,lightblue);
label("E", (17.25,1.5));
filldraw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle,lightred);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
filldraw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle,lightblue);
label("C", (1.25,-8.5));
filldraw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle,lightred);
label("A", (5.25,-8.5));
filldraw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle,lightred);
label("D", (9.25,-8.5));
filldraw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle,lightblue);
label("E", (13.25,-8.5));
filldraw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle,lightblue);
label("B", (17.25,-8.5));
filldraw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle,lightred);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
draw((1.25,-0.5)--(5.25,-6.5),Arrow);
draw((1.25,-6.5)--(9.25,-0.5),Arrow);
draw((13.25,-0.5)--(9.25,-6.5),Arrow);
draw((13.25,-6.5)--(17.25,-0.5),Arrow);
draw((21.25,-0.5)--(21.25,-6.5),Arrow);
draw((17.25,-6.5)--(5.25,-0.5),Arrow);
[/asy]](//latex.artofproblemsolving.com/4/a/9/4a95cb489abdd051b68f15f88f1167c12cc7685b.png)
Consider when this process stops. Notice that for all but the first box to be colored, its color and position uniquely determine the preceding box to be colored: red boxes on top are only colored immediately after the blue box in the same pair as them, blue boxes on top are only colored immediately after the blue box on the bottom with the same letter, and similarly for the bottom row. Thus if the process first ends at a box other than the initial box, that is, if the first box to be colored twice has a unique preceding box, then this preceding box must have been colored twice as well, contradicting our assumption. Thus, this process can only end at the initial box.
Furthermore, each pair either has neither or both of its boxes colored; this is easy to see, since if one box gets colored, the other must be colored immediately after. Additionally, notice that the difference between the number of colored boxes in the top row and the bottom row never exceeds
thus once this process stops, it must be
and an equal number of pairs have both boxes colored.
Now, color another box red, and repeat this entire process until all boxes are colored.
![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
filldraw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle,lightblue);
label("B", (5.25,1.5));
filldraw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle,lightblue);
label("C", (9.25,1.5));
filldraw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle,lightred);
label("D", (13.25,1.5));
filldraw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle,lightblue);
label("E", (17.25,1.5));
filldraw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle,lightred);
label("F", (21.25,1.5));
filldraw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle,lightred);
label("G", (25.25,1.5));
filldraw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle,lightblue);
label("H", (29.25,1.5));
filldraw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle,lightblue);
label("C", (1.25,-8.5));
filldraw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle,lightred);
label("A", (5.25,-8.5));
filldraw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle,lightred);
label("D", (9.25,-8.5));
filldraw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle,lightblue);
label("E", (13.25,-8.5));
filldraw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle,lightblue);
label("B", (17.25,-8.5));
filldraw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle,lightred);
label("F", (21.25,-8.5));
filldraw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle,lightblue);
label("H", (25.25,-8.5));
filldraw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle,lightred);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
draw((1.25,-0.5)--(5.25,-6.5),Arrow);
draw((1.25,-6.5)--(9.25,-0.5),Arrow);
draw((13.25,-0.5)--(9.25,-6.5),Arrow);
draw((13.25,-6.5)--(17.25,-0.5),Arrow);
draw((21.25,-0.5)--(21.25,-6.5),Arrow);
draw((17.25,-6.5)--(5.25,-0.5),Arrow);
draw((25.25,-0.5)--(29.25,-6.5),Arrow);
draw((25.25,-6.5)--(29.25,-0.5),Arrow);
[/asy]](//latex.artofproblemsolving.com/9/1/f/91faf79e452a2cb7600809de6932727d46ac9310.png)
It is not hard to see that exactly one box in each pair is colored red, and exactly one is colored blue.
Now consider the
boxes
(and
if necessary) together with the
red boxes (this is well-defined since two boxes with the same letter have the same color, by construction). Consider the pairs of boxes in the top row. We see that
has at least as many apples as the blue box in the first (leftmost) pair, and for all
the red box in pair
has at least as many apples as the blue box in pair
This shows that together, the blue boxes have at most as many apples as the union of
and the red boxes; thus, this choice of
boxes has at least half of the total number of apples. By the same logic, it has at least half of the total number of oranges.
However, by the same logic, the set of
boxes given by the union of
(possibly
) and the
blue boxes also contains at least half of the total number of apples and at least half of the total number of oranges. Now, if both of these sets contain less than half of the total number of bananas, then their complements must both contain at least half. However, their complements are the sets of blue and red boxes, respectively, and the number of bananas in their union is at most the number of bananas in all
boxes together, which is a contradiction.
Thus one of these subsets satisfies the conditions.
Problem statement:


First, isolate the box










![[asy]
size(10cm);
draw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle);
label("A", (1.25,1.5));
draw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle);
label("B", (5.25,1.5));
draw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle);
label("C", (9.25,1.5));
draw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle);
label("D", (13.25,1.5));
draw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle);
label("E", (17.25,1.5));
draw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
draw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle);
label("C", (1.25,-8.5));
draw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle);
label("A", (5.25,-8.5));
draw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle);
label("D", (9.25,-8.5));
draw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle);
label("E", (13.25,-8.5));
draw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle);
label("B", (17.25,-8.5));
draw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
[/asy]](http://latex.artofproblemsolving.com/e/8/f/e8fb5ec6b8de630ebd412661137f3f11c5ca5db5.png)
Now we color the boxes red and blue. Start with some box colored red:
![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
draw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle);
label("B", (5.25,1.5));
draw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle);
label("C", (9.25,1.5));
draw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle);
label("D", (13.25,1.5));
draw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle);
label("E", (17.25,1.5));
draw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
draw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle);
label("C", (1.25,-8.5));
draw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle);
label("A", (5.25,-8.5));
draw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle);
label("D", (9.25,-8.5));
draw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle);
label("E", (13.25,-8.5));
draw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle);
label("B", (17.25,-8.5));
draw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
[/asy]](http://latex.artofproblemsolving.com/7/d/6/7d63ba4a913833f8636768b83dde951baab409ab.png)
Next, repeat the following steps:
1. Color the box in the other row with the same letter as the last box the same color as the last box.
2. Color the other box in the pair that the last-colored box is in with the opposite color.
For example, after

![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
draw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle);
label("B", (5.25,1.5));
filldraw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle,lightblue);
label("C", (9.25,1.5));
filldraw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle,lightred);
label("D", (13.25,1.5));
draw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle);
label("E", (17.25,1.5));
draw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
filldraw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle,lightblue);
label("C", (1.25,-8.5));
filldraw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle,lightred);
label("A", (5.25,-8.5));
draw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle);
label("D", (9.25,-8.5));
draw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle);
label("E", (13.25,-8.5));
draw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle);
label("B", (17.25,-8.5));
draw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
draw((1.25,-0.5)--(5.25,-6.5),Arrow);
draw((1.25,-6.5)--(9.25,-0.5),Arrow);
[/asy]](http://latex.artofproblemsolving.com/d/2/4/d24bb2e33ab50e49ed9077da0d081710459c5eba.png)
Repeat this process until it reaches a box that is already colored:
![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
filldraw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle,lightblue);
label("B", (5.25,1.5));
filldraw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle,lightblue);
label("C", (9.25,1.5));
filldraw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle,lightred);
label("D", (13.25,1.5));
filldraw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle,lightblue);
label("E", (17.25,1.5));
filldraw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle,lightred);
label("F", (21.25,1.5));
draw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle);
label("G", (25.25,1.5));
draw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle);
label("H", (29.25,1.5));
filldraw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle,lightblue);
label("C", (1.25,-8.5));
filldraw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle,lightred);
label("A", (5.25,-8.5));
filldraw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle,lightred);
label("D", (9.25,-8.5));
filldraw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle,lightblue);
label("E", (13.25,-8.5));
filldraw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle,lightblue);
label("B", (17.25,-8.5));
filldraw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle,lightred);
label("F", (21.25,-8.5));
draw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle);
label("H", (25.25,-8.5));
draw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
draw((1.25,-0.5)--(5.25,-6.5),Arrow);
draw((1.25,-6.5)--(9.25,-0.5),Arrow);
draw((13.25,-0.5)--(9.25,-6.5),Arrow);
draw((13.25,-6.5)--(17.25,-0.5),Arrow);
draw((21.25,-0.5)--(21.25,-6.5),Arrow);
draw((17.25,-6.5)--(5.25,-0.5),Arrow);
[/asy]](http://latex.artofproblemsolving.com/4/a/9/4a95cb489abdd051b68f15f88f1167c12cc7685b.png)
Consider when this process stops. Notice that for all but the first box to be colored, its color and position uniquely determine the preceding box to be colored: red boxes on top are only colored immediately after the blue box in the same pair as them, blue boxes on top are only colored immediately after the blue box on the bottom with the same letter, and similarly for the bottom row. Thus if the process first ends at a box other than the initial box, that is, if the first box to be colored twice has a unique preceding box, then this preceding box must have been colored twice as well, contradicting our assumption. Thus, this process can only end at the initial box.
Furthermore, each pair either has neither or both of its boxes colored; this is easy to see, since if one box gets colored, the other must be colored immediately after. Additionally, notice that the difference between the number of colored boxes in the top row and the bottom row never exceeds


Now, color another box red, and repeat this entire process until all boxes are colored.
![[asy]
size(10cm);
filldraw((0,0)--(2.5,0)--(2.5,3)--(0,3)--cycle,lightred);
label("A", (1.25,1.5));
filldraw((4,0)--(6.5,0)--(6.5,3)--(4,3)--cycle,lightblue);
label("B", (5.25,1.5));
filldraw((8,0)--(10.5,0)--(10.5,3)--(8,3)--cycle,lightblue);
label("C", (9.25,1.5));
filldraw((12,0)--(14.5,0)--(14.5,3)--(12,3)--cycle,lightred);
label("D", (13.25,1.5));
filldraw((16,0)--(18.5,0)--(18.5,3)--(16,3)--cycle,lightblue);
label("E", (17.25,1.5));
filldraw((20,0)--(22.5,0)--(22.5,3)--(20,3)--cycle,lightred);
label("F", (21.25,1.5));
filldraw((24,0)--(26.5,0)--(26.5,3)--(24,3)--cycle,lightred);
label("G", (25.25,1.5));
filldraw((28,0)--(30.5,0)--(30.5,3)--(28,3)--cycle,lightblue);
label("H", (29.25,1.5));
filldraw((0,-10)--(2.5,-10)--(2.5,-7)--(0,-7)--cycle,lightblue);
label("C", (1.25,-8.5));
filldraw((4,-10)--(6.5,-10)--(6.5,-7)--(4,-7)--cycle,lightred);
label("A", (5.25,-8.5));
filldraw((8,-10)--(10.5,-10)--(10.5,-7)--(8,-7)--cycle,lightred);
label("D", (9.25,-8.5));
filldraw((12,-10)--(14.5,-10)--(14.5,-7)--(12,-7)--cycle,lightblue);
label("E", (13.25,-8.5));
filldraw((16,-10)--(18.5,-10)--(18.5,-7)--(16,-7)--cycle,lightblue);
label("B", (17.25,-8.5));
filldraw((20,-10)--(22.5,-10)--(22.5,-7)--(20,-7)--cycle,lightred);
label("F", (21.25,-8.5));
filldraw((24,-10)--(26.5,-10)--(26.5,-7)--(24,-7)--cycle,lightblue);
label("H", (25.25,-8.5));
filldraw((28,-10)--(30.5,-10)--(30.5,-7)--(28,-7)--cycle,lightred);
label("G", (29.25,-8.5));
draw((-0.25,-0.25)--(6.75,-0.25)--(6.75,3.25)--(-0.25,3.25)--cycle,linewidth(1.5));
draw((7.75,-0.25)--(14.75,-0.25)--(14.75,3.25)--(7.75,3.25)--cycle,linewidth(1.5));
draw((15.75,-0.25)--(22.75,-0.25)--(22.75,3.25)--(15.75,3.25)--cycle,linewidth(1.5));
draw((23.75,-0.25)--(30.75,-0.25)--(30.75,3.25)--(23.75,3.25)--cycle,linewidth(1.5));
draw((-0.25,-10.25)--(6.75,-10.25)--(6.75,-6.75)--(-0.25,-6.75)--cycle,linewidth(1.5));
draw((7.75,-10.25)--(14.75,-10.25)--(14.75,-6.75)--(7.75,-6.75)--cycle,linewidth(1.5));
draw((15.75,-10.25)--(22.75,-10.25)--(22.75,-6.75)--(15.75,-6.75)--cycle,linewidth(1.5));
draw((23.75,-10.25)--(30.75,-10.25)--(30.75,-6.75)--(23.75,-6.75)--cycle,linewidth(1.5));
draw((1.25,-0.5)--(5.25,-6.5),Arrow);
draw((1.25,-6.5)--(9.25,-0.5),Arrow);
draw((13.25,-0.5)--(9.25,-6.5),Arrow);
draw((13.25,-6.5)--(17.25,-0.5),Arrow);
draw((21.25,-0.5)--(21.25,-6.5),Arrow);
draw((17.25,-6.5)--(5.25,-0.5),Arrow);
draw((25.25,-0.5)--(29.25,-6.5),Arrow);
draw((25.25,-6.5)--(29.25,-0.5),Arrow);
[/asy]](http://latex.artofproblemsolving.com/9/1/f/91faf79e452a2cb7600809de6932727d46ac9310.png)
It is not hard to see that exactly one box in each pair is colored red, and exactly one is colored blue.
Now consider the










However, by the same logic, the set of





Thus one of these subsets satisfies the conditions.
This post has been edited 2 times. Last edited by OronSH, Feb 1, 2024, 6:57 PM