Revenge on the 2018 TSTST Part 2
by yayups, Nov 29, 2018, 5:26 AM
Day 2 as promised: I got 771 in test. I actually have really bad memory from real tests - I can't reconstruct any of my JMO solutions and these TSTST problems took me a while even though I solved two of them before.
Problem 4
Remarks
Problem 5![[asy]
unitsize(0.15inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -41.33230932049668, xmax = 36.78809813861262, ymin = -26.59415366581272, ymax = 25.401572078074953; /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451);
/* draw figures */
draw((-3.946114322208663,5.2120122282532035)--(-8.6,-3.91), linewidth(2) + wrwrwr);
draw((-8.6,-3.91)--(3.46,-4.05), linewidth(2) + wrwrwr);
draw((3.46,-4.05)--(-3.946114322208663,5.2120122282532035), linewidth(2) + wrwrwr);
draw(circle((-2.53835917879142,-1.2543692587466442), 6.617844368012295), linewidth(2) + wrwrwr);
draw((-4.052621133590975,-3.962788809394466)--(-3.946114322208663,5.2120122282532035), linewidth(2) + wrwrwr);
draw((-8.866847084300359,0.6811164449099725)--(3.83335389568267,0.5336845927376974), linewidth(2) + wrwrwr);
draw((-12.77188705654351,-12.087253886206755)--(-8.6,-3.91), linewidth(2) + wrwrwr);
draw((-3.946114322208663,5.2120122282532035)--(-6.503131953923097,8.409792810950895), linewidth(2) + wrwrwr);
draw((-3.946114322208663,5.2120122282532035)--(0.22577273433484024,13.389266114459943), linewidth(2) + wrwrwr);
draw((0.22577273433484024,13.389266114459943)--(3.83335389568267,0.5336845927376974), linewidth(2) + wrwrwr);
draw((3.83335389568267,0.5336845927376974)--(6.017017631714434,-7.24778058269769), linewidth(2) + wrwrwr);
draw((-12.77188705654351,-12.087253886206755)--(-8.866847084300359,0.6811164449099725), linewidth(2) + wrwrwr);
draw((-8.866847084300359,0.6811164449099725)--(-6.503131953923097,8.409792810950895), linewidth(2) + wrwrwr);
draw((3.46,-4.05)--(6.017017631714434,-7.24778058269769), linewidth(2) + wrwrwr);
draw(circle((-14.269962289866678,-0.4219551133251896), 11.761097944719635), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(-8.866847084300359,0.6811164449099725), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(3.83335389568267,0.5336845927376974), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(-6.503131953923097,8.409792810950895), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(-12.77188705654351,-12.087253886206755), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(0.22577273433484024,13.389266114459943), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(6.017017631714434,-7.24778058269769), linewidth(2) + wrwrwr);
draw(circle((-3.2422367505000405,1.9788214847532797), 3.3089221840061485), linewidth(2) + wrwrwr);
draw(circle((7.785488788866581,4.379598082831744), 11.761097944719621), linewidth(2) + wrwrwr);
/* dots and labels */
dot((-3.946114322208663,5.2120122282532035),dotstyle);
label("$A$", (-3.7432041729642234,5.719287601364303), NE * labelscalefactor);
dot((-8.6,-3.91),dotstyle);
label("$B$", (-8.410137605586337,-3.411669114635484), NE * labelscalefactor);
dot((3.46,-4.05),dotstyle);
label("$C$", (3.6630162744578256,-3.5638517265688137), NE * labelscalefactor);
dot((-2.53835917879142,-1.2543692587466442),linewidth(4pt) + dotstyle);
label("$O$", (-2.3228331282531456,-0.8245647117688777), NE * labelscalefactor);
dot((-4.052621133590975,-3.962788809394466),linewidth(4pt) + dotstyle);
label("$H$", (-3.8446592475864434,-3.5638517265688137), NE * labelscalefactor);
dot((-8.866847084300359,0.6811164449099725),linewidth(4pt) + dotstyle);
label("$P$", (-8.663775292141887,1.1030817060532996), NE * labelscalefactor);
dot((3.83335389568267,0.5336845927376974),linewidth(4pt) + dotstyle);
label("$Q$", (4.018109035635595,0.9508990941199696), NE * labelscalefactor);
dot((-6.503131953923097,8.409792810950895),linewidth(4pt) + dotstyle);
label("$E_{1}$", (-6.27958103851972,8.813667377342009), NE * labelscalefactor);
dot((-12.77188705654351,-12.087253886206755),linewidth(4pt) + dotstyle);
label("$F_{1}$", (-14.446714545608417,-11.883167845590842), NE * labelscalefactor);
dot((6.017017631714434,-7.24778058269769),linewidth(4pt) + dotstyle);
label("$E_{2}$", (6.1993931400133215,-6.861141651790959), NE * labelscalefactor);
dot((0.22577273433484024,13.389266114459943),linewidth(4pt) + dotstyle);
label("$F_{2}$", (0.4164538865467904,13.78496603383078), NE * labelscalefactor);
dot((-6.27305716110433,0.6510061141266021),linewidth(4pt) + dotstyle);
label("$M$", (-6.07667088927528,1.0523541687421896), NE * labelscalefactor);
dot((-0.2430571611043312,0.5810061141266015),linewidth(4pt) + dotstyle);
label("$N$", (-0.04009394925319893,1.0016266314310796), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/0/a/0/0a0c7b444f168cb165c10c3e18d37db95465af5c.png)
Note that
is the perpendicular bisector of
, so a homothety at
with scale factor
shows that it is the same line as
. Now, note that
is cyclic because
, and
is cyclic with diameter
. Therefore, the center of the spiral similarity that sends
is
. Therefore,
, and similarly we can show that
. Thus,
so
. By the cyclic quads
and
, we have that
so
. Similarly,
, and
, so
. Therefore, the circumcircles are also congruent. Note that the line connecting their centers is perpendicular to their radical axis which is
, which is perpendicular to the tangent at
. Therefore, the line connecting the centers is perpendicular to the tangent at
, as desired. 
Remarks
Problem 6
Remarks
Problem 4 wrote:
For an integer
, denote by
the set of integers
for which the polynomial
has an integer root.
Ivan Borsenco




- Let
denote the set of integers
for which
contains two consecutive integers. Show that
is infinite but
- Prove that there are infinitely many positive integers
such that
contains three consecutive integers.
Ivan Borsenco
(a) Suppose both
and
, so
. Then, suppose the first had integer root
, and second had
. Therefore,
and
, so
We need
, so
, so suppose
. Therefore,
, so
and
for some
. Therefore,
Thus,
for positive integers
. It is easy to see then that
, so this works for all
. We now note that
as desired.
(b) I have a really bad construction, but it works. The motivation was to get
to work as well, then bashing out
is a square, difference of squares, and then factor.
Note that
if and only if
is a perfect square (this can be seen from the quadratic formula). Let
where
. Obviously
. We claim that
as well. It is a straightforward computation to verify that
where
, and then we are done as the RHS is a square.
This can be done by hand, but here is a verification: https://www.wolframalpha.com/input/?i=simplify+(2xy%2Bx%2By-1)%5E2+-+4x(x%2B1)y(y%2B1)+-+(x(x%2B1)%2F2-4)%5E2+where+y%3Dx(x%2B1)%2F2%2B4%2B3x%2B1







![\[b+\frac{n}{b}=a+\frac{n}{a}+1\implies n(1/a-1/b)=b-a+1\implies n=ab\left(1+\frac{1}{b-a}\right).\]](http://latex.artofproblemsolving.com/6/e/6/6e62c3135360463d055e1ba06fdeb74217167b18.png)







![\[n=\ell^2k(k-1)(1+1/\ell)=\ell(\ell+1)k(k-1).\]](http://latex.artofproblemsolving.com/4/c/7/4c7ebdf614379a9eae54f802fd5f996e2e436d48.png)




![\[\sum_{n\in S}\frac{1}{n}\le\sum_{x\ge 1}\sum_{y\ge 1}\frac{1}{x(x+1)}=\left(\sum_{x\ge 1}\frac{1}{x(x+1)}\right)^2=1,\]](http://latex.artofproblemsolving.com/e/c/0/ec0d39556f0a4326c198e539d926d0652541f7b8.png)
(b) I have a really bad construction, but it works. The motivation was to get


Note that






![\[(2xy+x+y-1)^2 - 4x(x+1)y(y+1) = \left(\frac{x(x+1)}{2}-4\right)^2\]](http://latex.artofproblemsolving.com/2/8/0/2805b89d06abdea96d5830ddf7e97f7b105b25a7.png)

This can be done by hand, but here is a verification: https://www.wolframalpha.com/input/?i=simplify+(2xy%2Bx%2By-1)%5E2+-+4x(x%2B1)y(y%2B1)+-+(x(x%2B1)%2F2-4)%5E2+where+y%3Dx(x%2B1)%2F2%2B4%2B3x%2B1
Remarks
Was more or less plug and chug and it worked.
Problem 5 wrote:
Let
be an acute triangle with circumcircle
, and let
be the foot of the altitude from
to
. Let
and
be the points on
with
and
. The tangent to
at
intersects lines
and
at
and
respectively; the tangent to
at
intersects lines
and
at
and
respectively. Show that the circumcircles of
and
are congruent, and the line through their centers is parallel to the tangent to
at
.
Ankan Bhattacharya and Evan Chen


























Ankan Bhattacharya and Evan Chen
![[asy]
unitsize(0.15inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -41.33230932049668, xmax = 36.78809813861262, ymin = -26.59415366581272, ymax = 25.401572078074953; /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451);
/* draw figures */
draw((-3.946114322208663,5.2120122282532035)--(-8.6,-3.91), linewidth(2) + wrwrwr);
draw((-8.6,-3.91)--(3.46,-4.05), linewidth(2) + wrwrwr);
draw((3.46,-4.05)--(-3.946114322208663,5.2120122282532035), linewidth(2) + wrwrwr);
draw(circle((-2.53835917879142,-1.2543692587466442), 6.617844368012295), linewidth(2) + wrwrwr);
draw((-4.052621133590975,-3.962788809394466)--(-3.946114322208663,5.2120122282532035), linewidth(2) + wrwrwr);
draw((-8.866847084300359,0.6811164449099725)--(3.83335389568267,0.5336845927376974), linewidth(2) + wrwrwr);
draw((-12.77188705654351,-12.087253886206755)--(-8.6,-3.91), linewidth(2) + wrwrwr);
draw((-3.946114322208663,5.2120122282532035)--(-6.503131953923097,8.409792810950895), linewidth(2) + wrwrwr);
draw((-3.946114322208663,5.2120122282532035)--(0.22577273433484024,13.389266114459943), linewidth(2) + wrwrwr);
draw((0.22577273433484024,13.389266114459943)--(3.83335389568267,0.5336845927376974), linewidth(2) + wrwrwr);
draw((3.83335389568267,0.5336845927376974)--(6.017017631714434,-7.24778058269769), linewidth(2) + wrwrwr);
draw((-12.77188705654351,-12.087253886206755)--(-8.866847084300359,0.6811164449099725), linewidth(2) + wrwrwr);
draw((-8.866847084300359,0.6811164449099725)--(-6.503131953923097,8.409792810950895), linewidth(2) + wrwrwr);
draw((3.46,-4.05)--(6.017017631714434,-7.24778058269769), linewidth(2) + wrwrwr);
draw(circle((-14.269962289866678,-0.4219551133251896), 11.761097944719635), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(-8.866847084300359,0.6811164449099725), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(3.83335389568267,0.5336845927376974), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(-6.503131953923097,8.409792810950895), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(-12.77188705654351,-12.087253886206755), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(0.22577273433484024,13.389266114459943), linewidth(2) + wrwrwr);
draw((-2.53835917879142,-1.2543692587466442)--(6.017017631714434,-7.24778058269769), linewidth(2) + wrwrwr);
draw(circle((-3.2422367505000405,1.9788214847532797), 3.3089221840061485), linewidth(2) + wrwrwr);
draw(circle((7.785488788866581,4.379598082831744), 11.761097944719621), linewidth(2) + wrwrwr);
/* dots and labels */
dot((-3.946114322208663,5.2120122282532035),dotstyle);
label("$A$", (-3.7432041729642234,5.719287601364303), NE * labelscalefactor);
dot((-8.6,-3.91),dotstyle);
label("$B$", (-8.410137605586337,-3.411669114635484), NE * labelscalefactor);
dot((3.46,-4.05),dotstyle);
label("$C$", (3.6630162744578256,-3.5638517265688137), NE * labelscalefactor);
dot((-2.53835917879142,-1.2543692587466442),linewidth(4pt) + dotstyle);
label("$O$", (-2.3228331282531456,-0.8245647117688777), NE * labelscalefactor);
dot((-4.052621133590975,-3.962788809394466),linewidth(4pt) + dotstyle);
label("$H$", (-3.8446592475864434,-3.5638517265688137), NE * labelscalefactor);
dot((-8.866847084300359,0.6811164449099725),linewidth(4pt) + dotstyle);
label("$P$", (-8.663775292141887,1.1030817060532996), NE * labelscalefactor);
dot((3.83335389568267,0.5336845927376974),linewidth(4pt) + dotstyle);
label("$Q$", (4.018109035635595,0.9508990941199696), NE * labelscalefactor);
dot((-6.503131953923097,8.409792810950895),linewidth(4pt) + dotstyle);
label("$E_{1}$", (-6.27958103851972,8.813667377342009), NE * labelscalefactor);
dot((-12.77188705654351,-12.087253886206755),linewidth(4pt) + dotstyle);
label("$F_{1}$", (-14.446714545608417,-11.883167845590842), NE * labelscalefactor);
dot((6.017017631714434,-7.24778058269769),linewidth(4pt) + dotstyle);
label("$E_{2}$", (6.1993931400133215,-6.861141651790959), NE * labelscalefactor);
dot((0.22577273433484024,13.389266114459943),linewidth(4pt) + dotstyle);
label("$F_{2}$", (0.4164538865467904,13.78496603383078), NE * labelscalefactor);
dot((-6.27305716110433,0.6510061141266021),linewidth(4pt) + dotstyle);
label("$M$", (-6.07667088927528,1.0523541687421896), NE * labelscalefactor);
dot((-0.2430571611043312,0.5810061141266015),linewidth(4pt) + dotstyle);
label("$N$", (-0.04009394925319893,1.0016266314310796), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/0/a/0/0a0c7b444f168cb165c10c3e18d37db95465af5c.png)
Note that













![\[\angle E_1OF_1=\pi-\angle OE_2P-\angle OF_1P=\pi-\angle A=\angle E_1AF_1,\]](http://latex.artofproblemsolving.com/b/5/b/b5bc02b2d7ba8b5456c8bbe68bbd16ae2745d054.png)



![\[\angle OE_1E_2=\angle OPQ=\angle OQP=\angle OE_2E_1,\]](http://latex.artofproblemsolving.com/9/9/f/99f797a404b00cfda8a79341214d3875b90c193c.png)








Remarks
Once I noticed that PQ was the midline (which took a little while oops), the rest was immediate.
Problem 6 wrote:
Let
, and for every positive integer
define
Determine which
have the following property: if we color any
elements of
red, then at least half of the
-tuples in
have an even number of coordinates with red elements.
Ray Li


![\[ T_n = \left\{ (a_1, \dots, a_n) \in S^n \mid a_1 + \dots + a_n \equiv 0 \pmod{100} \right\}. \]](http://latex.artofproblemsolving.com/d/b/9/db9c2e99b54b653a4d3c8dc7fad0bef698208a5e.png)





Ray Li
The answer is
even.
The main idea is to shift focus to blueness rather than redness (blue iff not red). Suppose we pick an element of
randomly. Let
be
if the randomly chosen
is blue, and
if it is red. Note that if
, then
has a uniform random distribution (note that
). In particular, this means that
. Note that the probability that the number of reds in some randomly chose element of
is even is
where the last equality follows since
is a random variable that takes values in
. We can similarly derive that the probability that the number of reds is odd is
One can see then that
where
. Note that
by factoring. We noted that all squarefree monmials in the
that are not
have expectation
, so we see that
or that
Since the condition of the problem is equivalent to
, we see that it is equivalent to
If
is even, this is clearly true, so all
even work, as desired. However, if
is odd, we can force
to not have any all blue elements by coloring
blue if and only if
, so the LHS of the inequality is
, whereas the RHS is
. Therefore,
odd cannot possibly satisfy the condition, so we have completed the proof. 

The main idea is to shift focus to blueness rather than redness (blue iff not red). Suppose we pick an element of





![$I\subsetneq[n]=\{1,\ldots,n\}$](http://latex.artofproblemsolving.com/2/a/7/2a77bd3a3462a6b5c619abcbca2eb44b79bf99b3.png)

![$I\not=[n]$](http://latex.artofproblemsolving.com/a/d/e/adea2c9d0e9b323bf0384c95cb93654df4556ab0.png)


![\begin{align*}
p_e &= \sum_{\substack{I\subset[n]\\|I|\text{ even}}}\mathrm{Pr}\left(b_i=0\iff i\in I\right)\\
&= \sum_{\substack{I\subset[n]\\|I|\text{ even}}}\mathrm{Pr}\left(\prod_{i\in I}(1-b_i)\prod_{i\not\in I}b_i=1\right) \\
&= \sum_{\substack{I\subset[n]\\|I|\text{ even}}}\mathbb{E}\left(\prod_{i\in I}(1-b_i)\prod_{i\not\in I}b_i\right),
\end{align*}](http://latex.artofproblemsolving.com/7/f/4/7f475ad525573fe0a548b59b45ca17400c37b6f1.png)


![\[p_o = \sum_{\substack{I\subset[n]\\|I|\text{ odd}}}\mathbb{E}\left(\prod_{i\in I}(1-b_i)\prod_{i\not\in I}b_i\right).\]](http://latex.artofproblemsolving.com/3/d/5/3d5ae39dda93b8a2398912539d8134a8e1e182eb.png)
![\[p_e-p_o = \mathbb{E}\sum_{I\subset[n]}\left(\prod_{i\in I}(b_i-1)\prod_{i\not\in I}b_i\right)=\mathbb{E}f(b_1,\ldots,b_n),\]](http://latex.artofproblemsolving.com/6/c/b/6cbaf87c823c8c82ede3f59c02d96a977afb4425.png)
![$f(b_1,\ldots,b_n)=\sum_{I\subset[n]}\left(\prod_{i\in I}(b_i-1)\prod_{i\not\in I}b_i\right)$](http://latex.artofproblemsolving.com/0/e/7/0e7afef1c209ca3c97857d6271f7e60eb36034bd.png)




![\[p_e-p_o=\mathbb{E}f(b_1,\ldots,b_n) = 2^n\mathbb{E}(b_1\cdots b_n)+(2\cdot(1/4)-1)^n-(2\cdot(1/4))^n,\]](http://latex.artofproblemsolving.com/6/5/4/65434adddc3fe6edc3a09ae6344334631db2e32c.png)
![\[p_e-p_o=\frac{1}{2^n}((-1)^n-1)+2^n\mathbb{E}(b_1\cdots b_n).\]](http://latex.artofproblemsolving.com/d/1/6/d16d923cbc371fbf648c5a969cf0c29b8d5592a2.png)

![\[\frac{\text{\# of elements of }T_n\text{that are all blue}}{|T_n|}>\frac{1}{4^n}(1-(-1)^n).\]](http://latex.artofproblemsolving.com/a/c/8/ac854eae3ce7d84a5091aef56c5f168bd1de1c2c.png)










Remarks
In test, I did this argument wrt redness, and got some not-so-good inequality with all red sets that was equivalent to the condition. However, this turns out to not be nearly as helpful as reducing it to all blue. Nevertheless, my efforts earned me 1 point 
