Projective Bary
by yayups, May 11, 2019, 6:06 AM
This solution shows a nontrivial usage of the projective nature of barycentric coordinates.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
unitsize(0.2inches);
import graph; size(0cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -10, xmax = 14, ymin = -22.62, ymax = 13.46; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((0.26,7.92)--(-1.52,-2.18)--(9.54,-2.2)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((0.26,7.92)--(-1.52,-2.18), linewidth(2) + zzttqq);
draw((-1.52,-2.18)--(9.54,-2.2), linewidth(2) + zzttqq);
draw((9.54,-2.2)--(0.26,7.92), linewidth(2) + zzttqq);
draw(circle((4.017668907550992,2.050905875698934), 6.968955550057753), linewidth(2));
draw(circle((2.278232171040842,1.001527516890443), 3.1883907164579206), linewidth(2));
draw((5.8094995867931365,8.78556876819826)--(0.07556713698788581,3.306761151157378), linewidth(2));
draw((0.07556713698788581,3.306761151157378)--(-2.791521751662705,0.5672401366735647), linewidth(2));
draw((-2.791521751662705,0.5672401366735647)--(-5.658856324457237,-2.1725156305163527), linewidth(2));
draw((-5.658856324457237,-2.1725156305163527)--(-1.52,-2.18), linewidth(2));
draw((-2.791521751662705,0.5672401366735647)--(5.215750162966643,-4.8142920649363115), linewidth(2));
draw((5.215750162966643,-4.8142920649363115)--(5.8094995867931365,8.78556876819826), linewidth(2));
/* dots and labels */
dot((0.26,7.92),dotstyle);
label("$A$", (0.34,8.12), N * labelscalefactor);
dot((-1.52,-2.18),dotstyle);
label("$B$", (-1.44,-1.98), NE * labelscalefactor);
dot((9.54,-2.2),dotstyle);
label("$C$", (9.62,-2), E *3* labelscalefactor);
dot((2.2724665553022745,-2.1868579865376176),linewidth(4pt) + dotstyle);
label("$D$", (2.36,-2.02), NE * labelscalefactor);
dot((5.215750162966643,-4.8142920649363115),linewidth(4pt) + dotstyle);
label("$A'$", (5.3,-4.66), S * 4*labelscalefactor);
dot((-2.791521751662705,0.5672401366735647),linewidth(4pt) + dotstyle);
label("$B'$", (-3.48,0.62), NW*0.01 * labelscalefactor);
dot((5.8094995867931365,8.78556876819826),linewidth(4pt) + dotstyle);
label("$C'$", (5.88,8.94), NE * labelscalefactor);
dot((-5.658856324457237,-2.1725156305163527),linewidth(4pt) + dotstyle);
label("$T$", (-6.02,-1.92), NE * labelscalefactor);
dot((0.07556713698788581,3.306761151157378),linewidth(4pt) + dotstyle);
label("$X$", (0.02,3.66), N * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/9/2/6/9265c88f4a81d8aca6c5ad3b7c4cd51da79b1f5f.png)
Firstly, the problem is clearly just asking us to show that
is tangent to
. Letting
, we see that this is equivalent to
, but
, so all we need to show is that
We'll actually just compute the barycentric coordinates of
and verify this explicitly. However, finding
and
is really messy, and this doesn't seem tractable immediately. However, the beauty of this solution is getting a simple way to find the coordinates of
.
Let
be a variable point on
, and define the composite map
given by
where
is the
inverse of
and
and
are tangent to
with
. It's not easy to see that this map
is projective but its true.
Why?
Now, we check that
so
, and similarly
. Also,
but uh-oh, what's
? The fix is that we actually have the tangent to
at some point infinitesimally close to
, which then intersects
really close to
, so we have
.
Now, use projective coordinates for
given by the last two coordinates of the barycentric coordinates of a point on
. The map
looks like some matrix
that is considered the same under scaling. We see that
and
map to themselves, so
. The point
is given by
, and it maps to
, so the matrix is
Now, we see that
since
and
are
inverses (the incircle gets sent to the mixtilinear excircle), so
so
. The rest is a boring bash which we do below.
Homogenizing, we have
,
,
, and
. By taking simply the first coordinate, we get a coordinate system on
that preserves the lengths in the original setup, so
and
, and
Evidently, we have
, as desired. As we showed before, this means
, so
is tangent to
, which is tangent to
at
, so
is tangent to
. 
USAMO Shortlist 2014, 110 Geometery Problems #77 wrote:
Let
be a triangle with circumcircle
and incircle
. Let
be the mixtilinear excircle touch point, and let
and
be tangent to
with
. Let
be the tangency point of
with
which exists by Poncelet's Porism. Show that
is tangent to
.













![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
unitsize(0.2inches);
import graph; size(0cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -10, xmax = 14, ymin = -22.62, ymax = 13.46; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((0.26,7.92)--(-1.52,-2.18)--(9.54,-2.2)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((0.26,7.92)--(-1.52,-2.18), linewidth(2) + zzttqq);
draw((-1.52,-2.18)--(9.54,-2.2), linewidth(2) + zzttqq);
draw((9.54,-2.2)--(0.26,7.92), linewidth(2) + zzttqq);
draw(circle((4.017668907550992,2.050905875698934), 6.968955550057753), linewidth(2));
draw(circle((2.278232171040842,1.001527516890443), 3.1883907164579206), linewidth(2));
draw((5.8094995867931365,8.78556876819826)--(0.07556713698788581,3.306761151157378), linewidth(2));
draw((0.07556713698788581,3.306761151157378)--(-2.791521751662705,0.5672401366735647), linewidth(2));
draw((-2.791521751662705,0.5672401366735647)--(-5.658856324457237,-2.1725156305163527), linewidth(2));
draw((-5.658856324457237,-2.1725156305163527)--(-1.52,-2.18), linewidth(2));
draw((-2.791521751662705,0.5672401366735647)--(5.215750162966643,-4.8142920649363115), linewidth(2));
draw((5.215750162966643,-4.8142920649363115)--(5.8094995867931365,8.78556876819826), linewidth(2));
/* dots and labels */
dot((0.26,7.92),dotstyle);
label("$A$", (0.34,8.12), N * labelscalefactor);
dot((-1.52,-2.18),dotstyle);
label("$B$", (-1.44,-1.98), NE * labelscalefactor);
dot((9.54,-2.2),dotstyle);
label("$C$", (9.62,-2), E *3* labelscalefactor);
dot((2.2724665553022745,-2.1868579865376176),linewidth(4pt) + dotstyle);
label("$D$", (2.36,-2.02), NE * labelscalefactor);
dot((5.215750162966643,-4.8142920649363115),linewidth(4pt) + dotstyle);
label("$A'$", (5.3,-4.66), S * 4*labelscalefactor);
dot((-2.791521751662705,0.5672401366735647),linewidth(4pt) + dotstyle);
label("$B'$", (-3.48,0.62), NW*0.01 * labelscalefactor);
dot((5.8094995867931365,8.78556876819826),linewidth(4pt) + dotstyle);
label("$C'$", (5.88,8.94), NE * labelscalefactor);
dot((-5.658856324457237,-2.1725156305163527),linewidth(4pt) + dotstyle);
label("$T$", (-6.02,-1.92), NE * labelscalefactor);
dot((0.07556713698788581,3.306761151157378),linewidth(4pt) + dotstyle);
label("$X$", (0.02,3.66), N * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/9/2/6/9265c88f4a81d8aca6c5ad3b7c4cd51da79b1f5f.png)
Firstly, the problem is clearly just asking us to show that





![\[TB\cdot TC=TD^2.\]](http://latex.artofproblemsolving.com/2/d/8/2d8ca7873f2e762e57966529e2fb19f52d6cb0da.png)




Let



![\[P\mapsto P'\mapsto P_1P_2\cap BC\]](http://latex.artofproblemsolving.com/3/b/0/3b0a1bc34ad2accec60eebb852a299c9b94cb17e.png)








Why?
We're going to discuss why this map is projective. Let
be the tangency point of
to
. We have this Poncelet map from
given by
, and it's projective since it's bijective and can be constructed with ruler/compass. Now, the point
is the pole of
, which is projective, so
is projective. It's important to note that
is not projective since it doesn't pass through a fixed point, but since we're intersecting it with a line also tangent to
, it works out by using pole/polar.










Now, we check that
![\[B\mapsto C\mapsto AB\mapsto B,\]](http://latex.artofproblemsolving.com/b/6/9/b696c5b4d3d959c53822f3791ee22cc6e6fb3996.png)


![\[\infty_{BC}\mapsto A\mapsto BC,\]](http://latex.artofproblemsolving.com/7/0/5/705c34756f4cd1195dadbcd751763ef30a458a08.png)






Now, use projective coordinates for



![\[\begin{pmatrix}w & x\\ y& z\end{pmatrix}\]](http://latex.artofproblemsolving.com/9/b/9/9b96ab082094cdb16b53fba91dd088fb597fc6c8.png)






![\[\phi\equiv \begin{pmatrix}s-c & 0\\ 0 & -(s-b)\end{pmatrix}.\]](http://latex.artofproblemsolving.com/6/8/b/68bd66cd7a38db2d1345380b628b589a960ff750.png)




![\[T=\begin{pmatrix}s-c & 0\\ 0 & -(s-b)\end{pmatrix}\begin{pmatrix}s-c \\ s-b\end{pmatrix}=\begin{pmatrix}(s-c)^2 \\ -(s-b)^2\end{pmatrix},\]](http://latex.artofproblemsolving.com/1/1/2/112091d2ae6406785da1a9ec592ac043583852a5.png)

Homogenizing, we have





![\[TB=\frac{(s-c)^2}{(b-c)a}-1=\frac{(s-b)^2}{(b-c)a}\]](http://latex.artofproblemsolving.com/d/7/0/d702095640ed1b38129962cce048d18b092682dd.png)

![\[TD=\frac{(s-c)^2}{(b-c)a}-\frac{s-c}{a}=\frac{s-c}{a}\cdot\frac{s-b}{b-c}=\frac{(s-b)(s-c)}{a(b-c)}.\]](http://latex.artofproblemsolving.com/e/c/f/ecf4625af98721f9c35d194c39dcd73b6482258b.png)









This post has been edited 3 times. Last edited by yayups, May 11, 2019, 10:35 PM