We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
A projectional vision in IGO
Shayan-TayefehIR   15
N 8 minutes ago by mcmp
Source: IGO 2024 Advanced Level - Problem 3
In the triangle $\bigtriangleup ABC$ let $D$ be the foot of the altitude from $A$ to the side $BC$ and $I$, $I_A$, $I_C$ be the incenter, $A$-excenter, and $C$-excenter, respectively. Denote by $P\neq B$ and $Q\neq D$ the other intersection points of the circle $\bigtriangleup BDI_C$ with the lines $BI$ and $DI_A$, respectively. Prove that $AP=AQ$.

Proposed Michal Jan'ik - Czech Republic
15 replies
Shayan-TayefehIR
Nov 14, 2024
mcmp
8 minutes ago
A cyclic inequality
KhuongTrang   0
17 minutes ago
Source: Nguyen Van Hoa@Facebook.
Problem. Let $a,b,c$ be positive real variables. Prove that$$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{9abc}{a^2+b^2+c^2}\ge 2(a+b+c).$$
0 replies
KhuongTrang
17 minutes ago
0 replies
An alien statement I came across
GreekIdiot   2
N 17 minutes ago by DVDthe1st
Source: Some article I read a while ago, cannot find it...
Let $\mathbb{P} \subset \mathbb{N}$ be a set that intersects all non-finite integer arithmetic progressions, $\mathbb {A}$ be the set of prime divisors of $a^n-1$ and $\mathbb {B}$ be the set of prime divisors of $b^n-1$. Suppose $\mathbb {B} \subset \mathbb {A} \hspace{2 mm} \forall \hspace{2mm} n \in \mathbb{P}$. Prove that $b=a^k$, $k \in \mathbb {N}$
2 replies
GreekIdiot
Feb 15, 2025
DVDthe1st
17 minutes ago
Circles tangent to BC at B and C
MarkBcc168   9
N 21 minutes ago by channing421
Source: ELMO Shortlist 2024 G3
Let $ABC$ be a triangle, and let $\omega_1,\omega_2$ be centered at $O_1$, $O_2$ and tangent to line $BC$ at $B$, $C$ respectively. Let line $AB$ intersect $\omega_1$ again at $X$ and let line $AC$ intersect $\omega_2$ again at $Y$. If $Q$ is the other intersection of the circumcircles of triangles $ABC$ and $AXY$, then prove that lines $AQ$, $BC$, and $O_1O_2$ either concur or are all parallel.

Advaith Avadhanam
9 replies
MarkBcc168
Jun 22, 2024
channing421
21 minutes ago
Solve this hard problem:
slimshadyyy.3.60   2
N an hour ago by Alex-131
Let a,b,c be positive real numbers such that x +y+z = 3. Prove that
yx^3 +zy^3+xz^3+9xyz≤ 12.
2 replies
slimshadyyy.3.60
3 hours ago
Alex-131
an hour ago
Iran TST 2009-Day3-P3
khashi70   66
N an hour ago by ihategeo_1969
In triangle $ABC$, $D$, $E$ and $F$ are the points of tangency of incircle with the center of $I$ to $BC$, $CA$ and $AB$ respectively. Let $M$ be the foot of the perpendicular from $D$ to $EF$. $P$ is on $DM$ such that $DP = MP$. If $H$ is the orthocenter of $BIC$, prove that $PH$ bisects $ EF$.
66 replies
khashi70
May 16, 2009
ihategeo_1969
an hour ago
BAMO Geo
jsdd_   19
N an hour ago by LeYohan
Source: BAMO 1999/p2
Let $O = (0,0), A = (0,a), and B = (0,b)$, where $0<b<a$ are reals. Let $\Gamma$ be a circle with diameter $\overline{AB}$ and let $P$ be any other point on $\Gamma$. Line $PA$ meets the x-axis again at $Q$. Prove that angle $\angle BQP = \angle BOP$.
19 replies
jsdd_
Aug 11, 2019
LeYohan
an hour ago
complex bash oops
megahertz13   2
N an hour ago by lpieleanu
Source: PUMaC Finals 2016 A3
On a cyclic quadrilateral $ABCD$, let $M$ and $N$ denote the midpoints of $\overline{AB}$ and $\overline{CD}$. Let $E$ be the projection of $C$ onto $\overline{AB}$ and let $F$ be the reflection of $N$ over the midpoint of $\overline{DE}$. Assume $F$ lies in the interior of quadrilateral $ABCD$. Prove that $\angle BMF = \angle CBD$.
2 replies
megahertz13
Nov 5, 2024
lpieleanu
an hour ago
Counting Numbers
steven_zhang123   0
an hour ago
Source: China TST 2001 Quiz 8 P3
Let the decimal representations of numbers $A$ and $B$ be given as: $A = 0.a_1a_2\cdots a_k > 0$, $B = 0.b_1b_2\cdots b_k > 0$ (where $a_k, b_k$ can be 0), and let $S$ be the count of numbers $0.c_1c_2\cdots c_k$ such that $0.c_1c_2\cdots c_k < A$ and $0.c_kc_{k-1}\cdots c_1 < B$ ($c_k, c_1$ can also be 0). (Here, $0.c_1c_2\cdots c_r (c_r \neq 0)$ is considered the same as $0.c_1c_2\cdots c_r0\cdots0$).

Prove: $\left| S - 10^k AB \right| \leq 9k.$
0 replies
steven_zhang123
an hour ago
0 replies
Perfect Numbers
steven_zhang123   0
2 hours ago
Source: China TST 2001 Quiz 8 P2
If the sum of all positive divisors (including itself) of a positive integer $n$ is $2n$, then $n$ is called a perfect number. For example, the sum of the positive divisors of 6 is $1 + 2 + 3 + 6 = 2 \times 6$, hence 6 is a perfect number.
Prove: There does not exist a perfect number of the form $p^a q^b r^c$, where $a, b, c$ are positive integers, and $p, q, r$ are odd primes.
0 replies
steven_zhang123
2 hours ago
0 replies
Roots of unity
steven_zhang123   0
2 hours ago
Source: China TST 2001 Quiz 8 P1
Let $k, n$ be positive integers, and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ all be $k$-th roots of unity, satisfying:
\[
\alpha_1^j + \alpha_2^j + \cdots + \alpha_n^j = 0 \quad \text{for any } j (0 < j < k).
\]Prove that among $\alpha_1, \alpha_2, \ldots, \alpha_n$, each $k$-th root of unity appears the same number of times.
0 replies
steven_zhang123
2 hours ago
0 replies
Graph Theory Test in China TST (space stations again)
steven_zhang123   0
2 hours ago
Source: China TST 2001 Quiz 7 P3
MO Space City plans to construct $n$ space stations, with a unidirectional pipeline connecting every pair of stations. A station directly reachable from station P without passing through any other station is called a directly reachable station of P. The number of stations jointly directly reachable by the station pair $\{P, Q\}$ is to be examined. The plan requires that all station pairs have the same number of jointly directly reachable stations.

(1) Calculate the number of unidirectional cyclic triangles in the space city constructed according to this requirement. (If there are unidirectional pipelines among three space stations A, B, C forming $A \rightarrow B \rightarrow C \rightarrow A$, then triangle ABC is called a unidirectional cyclic triangle.)

(2) Can a space city with $n$ stations meeting the above planning requirements be constructed for infinitely many integers $n \geq 3$?
0 replies
steven_zhang123
2 hours ago
0 replies
How many cases did you check?
avisioner   16
N 2 hours ago by eezad3
Source: 2023 ISL N2
Determine all ordered pairs $(a,p)$ of positive integers, with $p$ prime, such that $p^a+a^4$ is a perfect square.

Proposed by Tahjib Hossain Khan, Bangladesh
16 replies
avisioner
Jul 17, 2024
eezad3
2 hours ago
A and B play a game
EthanWYX2009   2
N 2 hours ago by steven_zhang123
Source: 2025 TST 23
Let \( n \geq 2 \) be an integer. Two players, Alice and Bob, play the following game on the complete graph \( K_n \): They take turns to perform operations, where each operation consists of coloring one or two edges that have not been colored yet. The game terminates if at any point there exists a triangle whose three edges are all colored.

Prove that there exists a positive number \(\varepsilon\), Alice has a strategy such that, no matter how Bob colors the edges, the game terminates with the number of colored edges not exceeding
\[
\left( \frac{1}{4} - \varepsilon \right) n^2 + n.
\]
2 replies
+1 w
EthanWYX2009
Yesterday at 2:49 PM
steven_zhang123
2 hours ago
Shortlist 2017/G7
fastlikearabbit   29
N Aug 17, 2024 by Ywgh1
Source: Shortlist 2017
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
29 replies
fastlikearabbit
Jul 10, 2018
Ywgh1
Aug 17, 2024
Shortlist 2017/G7
G H J
G H BBookmark kLocked kLocked NReply
Source: Shortlist 2017
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fastlikearabbit
27902 posts
#1 • 6 Y
Y by Durjoy1729, Amir Hossein, Adventure10, Mango247, Blue_banana4, Rounak_iitr
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
62861
3564 posts
#2 • 10 Y
Y by PcelicaMaja, Durjoy1729, Amir Hossein, HolyMath, Limerent, sabkx, Adventure10, Mango247, Rounak_iitr, Funcshun840
I thought this was the easiest standard geometry (G1, G2, G3, G4, G5, G7) in this SL. Oops.
[asy]
unitsize(35);
pair A, B, C, D, I, Ib, Id, Oa, Oc, X;
Ib = (0, 1); Id = (0, -2); A = (4, 0); C = (-2.5, 0);
B = extension(A, reflect(A, Ib) * C, C, reflect(C, Ib) * A);
D = extension(A, reflect(A, Id) * C, C, reflect(C, Id) * A);
Oa = circumcenter(A, Ib, Id);
Oc = circumcenter(C, Ib, Id);
I = extension(A, Oa, C, Oc);
X = extension(Oa, Oc, I, bisectorpoint(B, I, D));
draw(A--I^^C--I, gray);
draw(A--Ib--C--Id--cycle, gray);
draw(Ib--Id, purple);
draw(Oa--X, lightred + dashed);
draw(B--I--D, dashed + gray);
draw(X--tangent(X, Oa, abs(A-Oa), 1), dotted);
draw(X--tangent(X, Oa, abs(A-Oa), 2), dotted);
draw(I--X, heavycyan);
draw(circumcircle(A, Ib, Id)^^circumcircle(C, Ib, Id), lightblue);
draw(circle(Ib, abs(Ib.y))^^circle(Id, abs(Id.y)), green);
draw(A--B--C--D--cycle, red);
draw(A--C, red);

dot("$A$", A, dir(A));
dot("$B$", B, dir(B));
dot("$C$", C, dir(C));
dot("$D$", D, dir(D));
dot("$I$", I, dir(I));
dot("$I_B$", Ib, dir(Ib));
dot("$I_D$", Id, dir(Id));
dot("$O_A$", Oa, dir(Oa));
dot("$O_C$", Oc, dir(Oc));
dot("$X$", X, dir(X));
[/asy]


Lemma. The incircles of $\triangle ABC$ and $\triangle ADC$ are tangent to each other. (Thus $\overline{I_BI_D} \perp \overline{AC}$.)

Proof. Since $ABCD$ is circumscribed $AB + CD = AD + BC$. Now the tangent length from $A$ to incircle $\triangle ABC$ equals $\tfrac{1}{2}(AB + AC - BC)$ while the tangent to $\triangle ADC$ has length $\tfrac{1}{2}(AD + AC - DC)$, which are evidently equal.

Now let $O_A$ be the circumcenter of $\triangle AI_BI_D$ and observe
\[\angle BAO_A = \angle BAI_B + \angle I_BAO_A = \angle I_BAC + \angle CAI_D = \frac{1}{2} \angle BAD\]by isogonality and so $O_A \in \overline{AI}$; similarly if $O_C$ is the circumcenter of $\triangle CI_BI_D$ then $O_C \in \overline{CI}$.

But note $\overline{AC} \perp \overline{I_BI_D} \perp \overline{O_AO_C}$ so $\overline{AC} \parallel \overline{O_AO_C}$ now. Consequently
\[\frac{XO_A}{XO_C} = \frac{AO_A}{CO_C} = \frac{O_AI}{O_CI}\]and $\overline{IX}$ is the external bisector of $\angle AIC$.

Since $\angle AIB + \angle CID = 180^{\circ}$, $\overline{IX}$ is also the internal bisector of $\angle BID$. Similarly $\overline{IY}$ is the external bisector of $\angle BID$ and the internal bisector of $\angle AIC$, so $\angle XIY = 90^{\circ}$ as claimed.
This post has been edited 1 time. Last edited by 62861, Jul 10, 2018, 10:57 AM
Reason: add point labels
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
juckter
322 posts
#3 • 5 Y
Y by Amir Hossein, Adventure10, Mango247, sabkx, Funcshun840
I though this was the hardest standard geo in this shortlist, but it's still really easy for a G7.

Let $\Gamma_a, \Gamma_b, \Gamma_c, \Gamma_d$ and $O_a, O_b, O_c, O_d$ be the circumcircles and circumcenters of $AI_bI_d, BI_cI_a, CI_dI_b, DI_aI_c$. First, because $ABCD$ is inscribed we have $AB + CD = BC + AD$, which implies that $AC + BC - AB = AC + CD - AD$. Thus the incircles of $ABC$ and $ACD$ are tangent to $AC$ at the same point, implying that $I_bI_d$ is perpendicular to $AC$. Analogously, $I_aI_c$ is perpendicular to $BD$. Now notice that

$$\angle I_bAO_a = 90^{\circ} - \angle AI_dI_b = \angle CAI_d = \frac{\angle CAD}{2} = \frac{\angle BAD}{2} - \frac{\angle BAC}{2}= \angle BAI - \angle BAI_b = \angle I_bAI$$
Implying that $O_a$ lies on line $AI$, with similar collinearities holding for the other three circumcenters. Because $O_aO_c$ is perpendicular to the common chord of $\Gamma_a$ and $\Gamma_c$, which is $I_bI_d$, and $AC$ is also perpendicular to $I_bI_d$ we find

$$\frac{IO_a}{IO_c} = \frac{AO_a}{CO_c} = \frac{r_a}{r_c}$$
We now aim to show that $I_bII_dX$ is cyclic. Because circles $\Gamma_a$ and $\Gamma_c$ both pass through $I_b$ and $I_d$ it suffices to show that

$$\frac{\text{Pow}(I, \Gamma_a)}{\text{Pow}(I, \Gamma_c)} = \frac{\text{Pow}(X, \Gamma_a)}{\text{Pow}(X, \Gamma_c)}$$
It is clear that the respective ratios are $\frac{O_aI^2 - r_a^2}{O_cI^2 - r_c^2}$ and $\frac{r_a^2}{r_c^2}$, which are equal due to the ratios we previously proved to be equal. Thus $I, I_b, X, I_d$ are indeed concyclic, and because $XI_b = XI_d$ it follows that $IX$ is the internal angle bisector of angle $I_bII_c$, which coincides with angle $BID$. Analogously, $IY$ is the internal angle bisector of $\angle CIA$. It now suffices to show that lines $IA$ and $IC$ are $I$-isogonal in triangle $BID$, which follows from simple angle chasing.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MarkBcc168
1594 posts
#4 • 6 Y
Y by Amir Hossein, Aryan-23, megarnie, Adventure10, Mango247, sabkx
Due to our team leader, this is a candidate for IMO P3 but end up losing C5 by 1 vote.

By a well known lemma (or simple side-chasing), incircles of $\Delta ABD$, $\Delta CBD$ are tangent. So $BD\perp I_AI_C$. Furthermore since
$$\angle I_ABI_C = \frac{\angle B}{2} = \angle ABI$$we get that $\angle I_CBD = \angle I_ABA = \angle I_ABD$ so $\{BI, BD\}$ are isogonal w.r.t. $\angle I_ABI_C$. But $BD\perp I_AI_C$ so the center $O_B$ of $\odot(BI_AI_C)$ lies on $BI$. Similarly, the center $O_D$ of $\odot(DI_AI_C)$ lies on $DI$.

Since $O_BO_D\perp I_AI_C\perp BD$ so $O_BO_D\parallel BD$. Hence
$$\frac{O_BY}{O_DY} = \frac{O_BB}{O_DD} = \frac{O_BI}{O_DI}$$so $IY$ externally bisects $\angle O_BIO_D \equiv \angle BID$. Similarly $IX$ externally bisects $\angle AIC$.

Now it suffices to prove that $IX$ internally bisects $\angle BID$ too, which is equivalent to $\{IA, IC\}$ are isogonal w.r.t. $\angle BID$. Finally, note by angle chasing that
$$\angle AID + \angle BIC = \left(180^{\circ} - \frac{\angle A}{2}-\frac{\angle D}{2}\right) + \left(180^{\circ} - \frac{\angle B}{2} - \frac{\angle D}{2}\right) = 180^{\circ}$$implying the desired isogonality so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
v_Enhance
6870 posts
#5 • 6 Y
Y by Amir Hossein, v4913, Adventure10, Mango247, Rounak_iitr, QuantumCinnamon
The proof begins with the following lemmas.

Lemma: The incircles $(I_B)$ and $(I_D)$ touch $\overline{AC}$ at the same point $T$, with $\overline{I_B T I_D} \perp \overline{ATC}$.

Proof. Since $ABCD$ is circumscribed, $AD+BC = AB+CD$, and it follows $AD+AC-DC = AB+AC-BC$, which implies the result. $\blacksquare$



Lemma: We have $\overline{O_A O_C} \parallel \overline{AC}$, and $O_A \in \overline{AI}$, $O_C \in \overline{CI}$.

Proof. The first observation follows by noticing that $\overline{O_A O_C}$ is the perpendicular bisector of $\overline{I_D T I_B}$. For the second part, note that $\overline{AO_A}$ is isogonal to $\overline{AT}$ with respect to $\angle I_B A I_D$; from which it follows that $\overline{AO_A}$ bisects $\angle BAD$. $\blacksquare$



[asy] size(14cm); pair A = dir(150); pair C = -conj(A); pair B = dir(240);

pair I_B = incenter(A, B, C); pair T = foot(I_B, A, C);

real r = 2.718; path wA = CR(A, r-abs(B-C)); path wC = CR(C, r-abs(B-A)); pair D = IP(wA, wC); pair I_D = incenter(A, D, C);

draw(A--B--C--D--cycle, heavycyan); draw(incircle(A, B, C), heavycyan+dotted); draw(incircle(A, D, C), heavycyan+dotted);

pair I = extension(D, I_D, B, I_B);

draw(CP(I, foot(I, A, B)), dotted+red);

draw(circumcircle(A, I_B, I_D), blue); draw(circumcircle(C, I_B, I_D), blue); pair O_A = circumcenter(A, I_B, I_D); pair O_C = circumcenter(C, I_B, I_D); draw(I_B--I_D, orange); draw(A--I--C, red);

draw(A--C, orange); draw(O_A--O_C, orange); draw(A--I_B--C--I_D--cycle, lightblue);

pair Z = IP(Line(O_A, O_C), circumcircle(I, I_B, I_D)); pair X = extension(I, I+dir(90)*(Z-I), O_A, O_C);

draw(X--O_A, orange); pair H_1 = IP(CP(midpoint(X--O_C), X), CP(O_C, C)); pair H_2 = OP(CP(midpoint(X--O_C), X), CP(O_C, C)); draw(H_1--X--H_2, heavygreen);

draw(circumcircle(X, Z, I), dashed+heavygreen); draw(B--I--D, red);

dot("$A$", A, dir(A)); dot("$C$", C, dir(C)); dot("$B$", B, dir(B)); dot("$I_B$", I_B, dir(340)); dot("$T$", T, dir(135)); dot("$D$", D, dir(D)); dot("$I_D$", I_D, dir(20)); dot("$I$", I, dir(315)); dot("$O_A$", O_A, dir(270)); dot("$O_C$", O_C, dir(270)); dot("$X$", X, dir(X));

/* TSQ Source:

!size(11cm); A = dir 150 C = -conj(A) B = dir 240

I_B = incenter A B C R340 T = foot I_B A C R135

!real r = 2.718; !path wA = CR(A, r-abs(B-C)); !path wC = CR(C, r-abs(B-A)); D = IP wA wC I_D = incenter A D C R20

A--B--C--D--cycle 0.1 lightcyan / heavycyan incircle A B C heavycyan dotted incircle A D C heavycyan dotted

I = extension D I_D B I_B R315

CP I foot I A B dotted red

circumcircle A I_B I_D 0.1 lightblue / blue circumcircle C I_B I_D 0.1 lightblue / blue O_A = circumcenter A I_B I_D R270 O_C = circumcenter C I_B I_D R270 I_B--I_D orange A--I--C red

A--C orange O_A--O_C orange A--I_B--C--I_D--cycle lightblue

Z := IP Line O_A O_C circumcircle I I_B I_D R45 X = extension I I+dir(90)*(Z-I) O_A O_C

X--O_A orange H_1 := IP CP midpoint X--O_C X CP O_C C H_2 := OP CP midpoint X--O_C X CP O_C C H_1--X--H_2 heavygreen

circumcircle X Z I 0.1 lightgreen / dashed heavygreen B--I--D red

*/ [/asy]



Remark: [Luke, Ankan] The first two claims are essentially a generalization of RMM 2015/4. In the RMM problem the quadrilateral with an incircle is degenerated to a triangle.

Now, the heart of the problem is the following claim.

Lemma: Line $\overline{IX}$ is the external angle bisector of $\angle AIC$ and the internal angle bisector of $\angle BID$.

Proof. As for the main proof, we let $\gamma$ be the Appolonian circle of $(O_A)$ and $(O_C)$; this coincides with the circumcircle of $\triangle X I_B I_D$ which is in fact isosceles. From \[ \frac{IO_A}{IO_C} = \frac{AO_A}{CO_C} \]we see $I$ lies on $\gamma$ too. Thus $\overline{IX}$ is the external angle bisector of $\angle O_A I O_C \equiv \angle AIC$. Moreover, $\overline{IX}$ is now the internal angle bisector of $\angle I_B I I_D \equiv \angle BID$. $\blacksquare$

Similarly, $\overline{IY}$ is the external angle bisector of $\angle BID$ and the internal angle bisector of $\angle AIC$. So $\angle XIY = 90^{\circ}$ follows.
This post has been edited 1 time. Last edited by v_Enhance, Aug 21, 2018, 2:45 AM
Reason: colorize
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Vrangr
1600 posts
#6 • 5 Y
Y by sa2001, Amir Hossein, Math5000, Adventure10, Mango247
Claim 1. $\overline{I_AI_C} \perp \overline{BD}$
Proof. Let $T$ be the $A$-intouch point of $\triangle ABD$ and $T'$ be the $C$-intouch point of $\triangle CBD$.
By Pitot's Theorem,
\[2BT = AB + BD - AD = CD + BD - CB = 2BT'.\]Thus, $T\equiv T'$ and the result follows.
Similarly, $\overline{I_BI_D}\perp \overline{AC}$

Let $\omega_a$ be the circumcircle of $\triangle AI_bI_d$. Similarly define, $\omega_b$, $\omega_c$ and $\omega_d$.
Let $O_a$ be the center of $\omega_a$. Similarly define $O_b$, $O_c$ and $O_d$.

Claim 2. $O_a \in \overline{AI}$
Proof. Since, $CA\perp I_bI_d$, $\angle I_bAO_a = \angle CAI_d$
\[\angle BAO_a = \angle BAI_b + \angle I_bAO_a = \angle I_bAC + \angle CAI_d = \angle I_bAI_d = \tfrac12(\angle BAC + \angle DAC) = \tfrac12\angle BAD\]Thus, $O_a\in\overline{AI}$.

Claim 3. $\overline{O_aO_c}\parallel \overline{AC}$.
Proof 3. Since, $\overline{I_bI_d}$ is the the radical axis of $\omega_a$ and $\omega_c$.
Also, $\overline{AC} \perp \overline{I_bI_d}$. Thus, $\overline{AC}\parallel \overline{O_aO_c}$.

Claim 4. $\overline{IX}$ is the external angle bisector of $\angle AIC$.
Proof.
\[\frac{XO_a}{XO_c} = \frac{AO_a}{CO_c} = \frac{IO_a}{IO_c}\]Thus, $\odot(II_bI_cX)$ is the Apollonian circle of $\omega_a$ and $\omega_c$.
Therefore, $IX$ is the external bisector of $\angle O_aIO_c \equiv \angle AIC$.

Claim 5. $\overline{IY}$ is the internal angle bisector of $\angle AIC$.
Proof.
Note that by symmetry, $YI_a = YI_c$. Since, $Y, I, I_a, I_c$ are concylic, the result follows.

Thus, we are done.
All the solutions posted are very, very similar. Any other proofs?
Attachments:
This post has been edited 2 times. Last edited by Vrangr, Jul 10, 2018, 2:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mofumofu
179 posts
#9 • 7 Y
Y by Vrangr, Amir Hossein, skt, AlastorMoody, CyclicISLscelesTrapezoid, Adventure10, sabkx
Here's a solution by pure angle chasing.

Lemma: Let 2 circles $\omega_1$ and $\omega_2$ with centers $O_1,O_2$ intersect at $A,B$, where $\omega_2$ is bigger than $\omega_1$. Their common external tangents meet at $X $. If $\angle AO_1B=x, \angle AO_2B=y $, then $\angle AXB= \frac{x-y}{2}. $

Proof

Back to problem: Let $\angle A=2a, \angle B=2b,  \angle C=2c, \angle D=2d. $ We will show $X,I_b,I,I_d $ cyclic. Let $O_1,O_2$ be the circumcenters of $\triangle AI_bI_d, CI_bI_d $ respectively (here assuming quadrialteral $ABID$ convex). Then $\angle I_bO_1I_d=2a, \angle I_bO_2I_d=2c $, so by lemma $\angle I_bXI_d=a-c,$, furthermore $\angle I_bII_d=b+2c+d$, summing them we get $a+b+c+d $ which is $180^{\circ}$. Since $XI_b=XI_d$, we get that $IX $ is the angle bisector of $\angle BID $, similarly $IY $ is the angle bisector of $\angle AIC $.

Finally (assume $AICB $ convex) $\angle XIY=\angle BIX +\angle AIY- \angle AIB= \frac{b+2c+d}{2} +\frac{a+2d+c}{2} - (180^{\circ}-a-b)= \frac{3}{2} (a+b+c+d) -180^{\circ}= 90^{\circ}$ and we are done.
This post has been edited 1 time. Last edited by mofumofu, Jul 11, 2018, 7:05 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JuanOrtiz
366 posts
#10 • 3 Y
Y by Amir Hossein, Adventure10, Mango247
Surprisingly, I've solved a geometry problem. First, let $(P,\omega)$ denote the square root of the power of a point from $P$ to a circle $\omega$. Let $\omega_{A,B,C,D}$ be the 4 incircles in the problem. Because $ABCD$ is circumscribed, that means $AB+CD=BC+AD$. But then
\[ (A,\omega_B)+(C,\omega_B) = AC = (A,\omega_D)+(C,\omega_D)\]\[ (A,\omega_B)+(C,\omega_D) = AB + CD - (B,\omega_B)-(D,\omega_D) = (A,\omega_D)+(C,\omega_D)\]and the two equations imply $(A,\omega_B)=(A,\omega_D)$. Hence $\omega_B,\omega_D$ are both tangent to $AC$ at the same point.

Let $J_a,J_b$ be the circumcenters of $AI_bI_D,CI_bI_d$. Then since $AC \perp I_bI_c$, we have that $AC$ and $AJ_a$ are symmetric around the perp. bisector of $\angle I_bAI_d$. But so are $AC$ and $AI$ by easy angle-chasing. Therefore, $A,J_a,I$ are collinear and similarly $C,J_c,I$ are collinear so that
\[ I = AJ_a \cap CJ_c.\]Notice $AC\perp I_bI_d \perp J_aJ_c$ and so the parallelity gives us
\[ \frac{J_aI}{IJ_c} = \frac{J_aA}{J_cC} = \frac{rad(AI_bI_d)}{rad(CI_bI_d)} = \frac{J_aX}{XJ_c},\]with the last equation because $X$ is the external center of similitude of the two circles. Therefore $IX$ is the external angle bisector of $\angle J_aIJ_b = \angle AIC$. Similarly, $YI$ is the external angle bisector of $\angle BID$.

Since the external and internal angle bisectors of an angle are perpendicular, to finish the problem it suffices to prove the (internal) angle bisectors of $BID$ and $AIC$ are perpendicular. That is equivalent to proving $\angle AID + \angle BIC =180$, but this follows easily by angle-chasing from the condition that $I$ is the incenter of $ABCD$. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_pi_rate
1218 posts
#11 • 4 Y
Y by math-o-enthu, amar_04, Adventure10, Mango247
Doable for a G7, if one is familiar with the configuration (atleast doable at home, cause one has geogebra; otherwise the diagram's just a big fat mess!). My solution is quite similar to some of the above solutions, but still posting since it is a G7 :D (and also cuz this is my 200th post :P). See the remark at the end for some motivation. Anyway, here's my solution:
Let $\odot (AI_bI_d)=\omega_a,\odot (BI_aI_c)=\omega_b,\odot (CI_bI_d)=\omega_c,\odot (DI_aI_c)=\omega_d$, and let $O_a,O_b,O_c,O_d$ be their respective centers. Also, Let $R_a,R_b,R_c,R_d$ be their respective radii. We start off with a well known lemma.

LEMMA $I_aI_c \perp BD$, and $O_bO_d \parallel BD$.

PROOF: Let the incircles of $\triangle DAB$ and $\triangle BCD$ meet $BD$ at $P$ and $Q$ respectively. Then $BP=\frac{1}{2}(AB+BD-AD)$ and $BQ=\frac{1}{2}(BC+BD-CD)$. But, By Pitot's Theorem, we have $AB+CD=BC+AD \Rightarrow AB-AD=BC-CD \Rightarrow BP=BQ \Rightarrow P \equiv Q$. This gives that $I_aI_c \perp BD$. Also as $I_aI_c$ is the radical axis of $\omega_b$ and $\omega_d$, so we get that $O_bO_d \perp I_aI_c \Rightarrow O_bO_d \parallel BD$. $\Box$

Return to the problem at hand. Note that in $\triangle BI_aI_c$, we have $BD$ and $BO_b$ are isogonal in $\angle I_aBI_c$ $\Rightarrow \angle I_aBO_b=\angle I_cBD=\frac{1}{2} \angle CBD=\frac{1}{2}(\angle CBA-\angle DBA)=\angle ABI-\angle ABI_a=\angle I_aBI$
$\Rightarrow O_b$ lies on $BI$. All other such results hold cyclically. Thus, we have that $$\frac{YO_b}{YO_d}=\frac{R_b}{R_d}=\frac{BO_b}{DO_d}=\frac{IO_b}{IO_d}$$where the last equality follows from the fact that $\triangle IO_bO_d \sim \triangle IBD$. As $Y$ lies on $O_bO_d$, the above equality gives that $YI$ is the external angle bisector of $\angle BID$. In a similar fashion, we have that $XI$ is the external angle bisector of $\angle AIC$. So it suffices to show that the external angle bisector of $\angle AIC$ is the internal angle bisector of $\angle BID$, which is an easy angle chase. Hence done. $\blacksquare$

REMARK: My solution was inspired by just one thought, basically the involvement of so many incenters and the weird condition to be proved, all of which made me think that maybe $XI$ and $YI$ were internal and external angle bisector of some angle, which will help me prove the problem. $\angle AIC$ or $\angle BID$ seemed like the best choice, and noticing that the external angle bisector of $\angle AIC$ must be the internal angle bisector of $\angle BID$ was a kind of a confirmation that I was going on the right path. Some angle chase, along with the lemma (which was, by chance, known to me) and the rest is all history!!

EDIT: 200th post on AOPS. Yipee!! :trampoline: :winner_first:
This post has been edited 5 times. Last edited by math_pi_rate, Sep 30, 2018, 7:29 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Plops
946 posts
#12 • 3 Y
Y by cosmicgenius, Adventure10, Mango247
Can someone tell me what the shooting lemma is?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
william122
1576 posts
#13 • 1 Y
Y by Adventure10
Suppose that the point at which the incircle of $ABC$ hits $AC$ is $K_B$, and likewise for $ADC$. Clearly, $K_BA=\frac{AB-BC+AC}{2}=\frac{AD_CD+AC}{2}=K_DA$ by Pitot, so $K_B=K_D$. Therefore, these two circles are tangent to each other, and $IBI_D\perp AC$. Likewise, $I_AI_C\perp BD$. Define the circumcenter of $AI_BI_D$ to be $O_A$ and similarly for other 3. It is easy to see that $BI$ and $BD$ are isogonal in $BI_AI_C$, so $O_B$ lies on $BI$. As $I_AI_C$ is the radical axis of $(O_B)$ and $(O_D)$, we have $O_BO_D\perp I_AI_C$, so $O_BO_D\parallel BD$. Now, extend $IY$ to intersect $BD$ at $Y'$. Due to $I_BI_D\parallel BD$, there exists a homothety which brings $YO_BO_D$ (which is a line) to $Y'BD$. Therefore, $\frac{Y'B}{Y'D}=\frac{YO_B}{YO_D}$. If $R_B$, $R_D$ are the radii of the two circles, this is equal to $\frac{R_B}{R_D}$ by similar triangles. Now, by extend law of sines, $2R_B\sin\frac{B}{2}=I_AI_C=2R_D\sin\frac{D}{2}$, so the ratio is $\frac{\sin\frac{D}{2}}{\sin\frac{B}{2}}=\frac{BI}{DI}$. We get a similar result for $X'$, and we wish to show $\angle X'IY'=90$. I will proceed with complex numbers.

Suppose that the points at which the incircle touches $AB$, $BC$, $CD$, and $AD$ are $W$, $X$, $Y$, $Z$ (for convenience, we will assume the original points $X$, $Y$ don't exist anymore.) This implies that $a=\frac{2wz}{w+z}$ and similar expressions. Then, by the ratio we found earlier, we know that $y'=\frac{d|b|-|d|b}{|b|-|d|}$. We wish to show that $\frac{y'}{x'}$ is purely imaginary, so we can get rid of constant factors. $y'=C\left(\frac{d}{|d|}-\frac{b}{|b|}\right)=\sqrt{\frac{d}{\overline{d}}}-\sqrt{\frac{b}{\overline{b}}}=\sqrt{yz}-\sqrt{wx}$, where $\sqrt{yz}$ is defined as the midpoint of the arc $YZ$. There is a similar expression for $x'$, so we need to show $\frac{\sqrt{yz}-\sqrt{wx}}{\sqrt{wz}-\sqrt{xy}}$ is purely imaginary. Conjugating, we realize that this expression is either equal to, or the negation of its conjugate, so it is purely real or imaginary. However, it is obviously not real, since that would imply $X'$ and $Y'$ both lie on the intersection of $AC$ and $BD$, so it is imaginary, as desired.
This post has been edited 2 times. Last edited by william122, Dec 6, 2018, 3:29 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ayan.nmath
643 posts
#14 • 7 Y
Y by AlastorMoody, Kayak, Pluto1708, a_simple_guy, amar_04, Adventure10, Mango247
ISL 2017 G7 wrote:
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.

Solution with Kayak :

First consider the following lemma,

Lemma 1. Let two circles of unequal radius $\Omega_1$ and $\Omega_2$ with centers $A$ and $B$ respectively, intersect at $X$ and $Y,$ and the intersection of both external common tangents be $T,$ then it follows that
\[\angle XTY=\tfrac12|\angle XAY-\angle XBY|.\]Proof. Let the tangency points $P,Q,R$ and $S$ as shown in the diagram. Assume $\angle XAY>\angle XBY.$
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(8cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -13.65138319721991, xmax = 11.010604454866138, ymin = -8.745266251788848, ymax = 7.5882468817238795;  /* image dimensions */
pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); 
 /* draw figures */
draw(circle((-4.55,0.34), 2.851581410625324), linewidth(0.8) + blue); 
draw(circle((1.97,0.34), 5.126097756902516), linewidth(0.8) + blue); 
draw((-12.724182097089779,0.34)--(0.1817495182991372,5.144064781829826), linewidth(0.8)); 
draw((-12.724182097089779,0.34)--(0.1817495182991376,-4.464064781829825), linewidth(0.8)); 
draw((-12.724182097089779,0.34)--(1.97,0.34), linewidth(0.8) + dtsfsf); 
draw((1.97,0.34)--(0.1817495182991372,5.144064781829826), linewidth(0.8) + dtsfsf); 
draw((-4.55,0.34)--(-5.5447804495717,3.0124386613304805), linewidth(0.8) + dtsfsf); 
draw((-4.55,0.34)--(-2.6815154656362807,2.4941313994897123), linewidth(0.8) + dtsfsf); 
draw((-2.6815154656362807,2.4941313994897123)--(1.97,0.34), linewidth(0.8) + dtsfsf); 
draw((-12.724182097089779,0.34)--(-2.6815154656362807,2.4941313994897123), linewidth(0.8) + dtsfsf); 
 /* dots and labels */
dot((-4.55,0.34),linewidth(2pt) + dotstyle); 
label("$A$", (-4.433459943653323,0.4457040098082481), NE * labelscalefactor); 
dot((-2.6815154656362807,2.4941313994897123),linewidth(2pt) + dotstyle); 
label("$X$", (-2.573703497758309,2.601943367367684), NE * labelscalefactor); 
dot((1.97,0.34),linewidth(2pt) + dotstyle); 
label("$B$", (2.0891641129639718,0.4457040098082481), NE * labelscalefactor); 
dot((-2.6815154656362807,-1.8141313994897124),linewidth(2pt) + dotstyle); 
label("$Y$", (-2.573703497758309,-1.710535347751188), NE * labelscalefactor); 
dot((-5.5447804495717,-2.332438661330481),linewidth(4pt) + dotstyle); 
dot((-5.5447804495717,3.0124386613304805),linewidth(4pt) + dotstyle); 
dot((-12.724182097089779,0.34),linewidth(2pt) + dotstyle); 
label("$T$", (-12.627169502379179,0.4457040098082481), NE * labelscalefactor); 
dot((-5.5447804495717,3.0124386613304805),linewidth(2pt) + dotstyle); 
label("$P$", (-5.430720646524562,3.11405021478805), NE * labelscalefactor); 
dot((0.1817495182991372,5.144064781829826),linewidth(2pt) + dotstyle); 
label("$Q$", (0.28331365100794387,5.243336580377993), NE * labelscalefactor); 
dot((0.1817495182991376,-4.464064781829825),linewidth(2pt) + dotstyle); 
label("$R$", (0.28331365100794387,-4.351928560761497), NE * labelscalefactor); 
dot((-5.5447804495717,-2.332438661330481),linewidth(2pt) + dotstyle); 
label("$S$", (-5.430720646524562,-2.222642195171554), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Because of similar triangles, we have
\[\frac{AX}{XB}=\frac{AP}{BQ}=\frac{TA}{TB}\]therefore, $XT$ is the external angle bisector of $\angle AXB$ in $\triangle AXB,$ so,
\[\angle XTA=\angle XAB-\angle TXA\\
=\angle XAB-\tfrac12(\angle XAB+\angle XBA)\\
=\tfrac12(\angle XAB-\angle XBA)
\]Hence the lemma follows. $\square$

Claim 1. $IX$ is the angle bisector of $\angle BID.$
Proof.
[asy]
   /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(9cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -15.029587282329945, xmax = 7.821125636107711, ymin = -3.9589162285562303, ymax = 11.29166970599573;  /* image dimensions */
pen qqffff = rgb(0,1,1); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); 
 /* draw figures */
draw(circle((-3.63,0.82), 2.561249694973139), linewidth(0.4) + green); 
draw(circle((-2.9301484511856355,1.6716958302436256), 1.8351371121061375), linewidth(0.4) + qqffff); 
draw(circle((-5.043050471867659,-0.23065722546216416), 1.007977746206019), linewidth(0.4) + qqffff); 
draw(circle((-4.9236315400142,1.7612603815200627), 1.9954940827501395), linewidth(0.4) + dtsfsf); 
draw(circle((-2.432709104490185,-1.005352803974168), 2.722872617954823), linewidth(0.4) + dtsfsf); 
draw((-6.537200028152899,2.935310366987723)--(-1.1613820360339426,3.824225153086133), linewidth(0.4)); 
draw((-1.1613820360339426,3.824225153086133)--(-0.939307930838531,-3.28214621316702), linewidth(0.4)); 
draw((-0.939307930838531,-3.28214621316702)--(-5.960033123256581,-0.9124689989877295), linewidth(0.4)); 
draw((-5.960033123256581,-0.9124689989877295)--(-6.537200028152899,2.935310366987723), linewidth(0.4)); 
draw((-11.757241194551257,9.3512014833134)--(-3.63,0.82), linewidth(0.4)); 
draw((-3.63,0.82)--(-1.1613820360339426,3.824225153086133), linewidth(0.4)); 
draw((-3.63,0.82)--(-5.960033123256581,-0.9124689989877295), linewidth(0.4)); 
draw((-4.773226070595338,-2.3967605892700847)--(-11.757241194551257,9.3512014833134), linewidth(0.4)); 
draw((-11.757241194551257,9.3512014833134)--(-0.8041446517700683,1.1768050997863675), linewidth(0.4)); 
draw((-6.537200028152899,2.935310366987723)--(-0.939307930838531,-3.28214621316702), linewidth(0.4)); 
draw(circle((-7.813705265614099,4.97120219354323), 5.893714397661739), linewidth(0.4) + blue+dashed); 
draw((-11.757241194551257,9.3512014833134)--(-5.043050471867659,-0.23065722546216416), linewidth(0.4)); 
draw((-2.9301484511856355,1.6716958302436256)--(-11.757241194551257,9.3512014833134), linewidth(0.4)); 
draw((-6.537200028152899,2.935310366987723)--(-5.043050471867659,-0.23065722546216416), linewidth(0.4)); 
draw((-6.537200028152899,2.935310366987723)--(-2.9301484511856355,1.6716958302436256), linewidth(0.4)); 
 /* dots and labels */
dot((-3.63,0.82),linewidth(2pt) + dotstyle); 
label("$I$", (-3.5287328729400675,0.9232845491716251), NE * labelscalefactor); 
dot((-6.537200028152899,2.935310366987723),linewidth(2pt) + dotstyle); 
label("A", (-6.44798694622065,3.037227153961006), NE * labelscalefactor); 
dot((-1.1613820360339426,3.824225153086133),linewidth(2pt) + dotstyle); 
label("B", (-1.062466500685783,3.918036572623248), NE * labelscalefactor); 
dot((-5.960033123256581,-0.9124689989877295),linewidth(2pt) + dotstyle); 
label("D", (-5.869169328242603,-0.813168304762509), NE * labelscalefactor); 
dot((-0.939307930838531,-3.28214621316702),linewidth(2pt) + dotstyle); 
label("C", (-0.8359726501726344,-3.1787707434553876), NE * labelscalefactor); 
dot((-2.9301484511856355,1.6716958302436256),linewidth(2pt) + dotstyle); 
label("$I_d$", (-2.824085338010272,1.778927984443517), NE * labelscalefactor); 
dot((-5.043050471867659,-0.23065722546216416),linewidth(2pt) + dotstyle); 
label("$I_b$", (-4.938027942799659,-0.13368675322306528), NE * labelscalefactor); 
dot((-4.773226070595338,-2.3967605892700847),linewidth(4pt) + dotstyle); 
dot((-0.8041446517700683,1.1768050997863675),linewidth(4pt) + dotstyle); 
dot((-11.757241194551257,9.3512014833134),linewidth(2pt) + dotstyle); 
label("$X$", (-11.657345508023067,9.454552918500196), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
It is obvious that $B,I_d,I$ and $D,I_b,I$ are collinear. Therefore,
\[\angle I_dII_b=\angle BID=360^{\circ}-\tfrac12\angle B-\tfrac12\angle C-\angle A=180^{\circ}-\tfrac{1}{2}(\angle A-\angle C).\]Note that $\angle I_d A I_b=\tfrac12 \angle A$ and $\angle I_dCI_b=\tfrac12\angle C,$ therefore by lemma 1, we get that $\angle I_d X I_b=\tfrac12(\angle A-\angle C).$ So, it follows that $XI_dII_b$ is cyclic, but it is obvious that $XI_d=XI_b,$ so $IX$ is the angle bisector of $\angle BID.$ Hence the claim. $\square$

Coming back to the original problem, it reduces to showing that the angle bisectors of $\angle BID$ and $\angle AIC$ are perpendicular. Note that $\angle AIB+\angle DIC=180^{\circ},$ hence it follows that $AI$ and $CI$ are isogonal with respect to $\angle BID,$ thus, it is obvious by simple angle chasing that $IX\perp IY.$ And we are done. $\blacksquare$
This post has been edited 1 time. Last edited by ayan.nmath, May 18, 2019, 2:47 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AlastorMoody
2125 posts
#15 • 5 Y
Y by MathBoy23, DPS, amar_04, Pluto04, Adventure10
ISL 2017 G7 wrote:
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
Solution: $CD+AB=AD+BC$ $\implies$ $CD+AC-AD=AC+BC-AB \implies I_BI_D \perp AC$ & Similarly, $I_AI_C \perp BD$. Obviously, $\Delta YI_AI_C$ & $\Delta XI_BI_D$ are Isosceles. Let $\stackrel{\longrightarrow}{YI_C}, \stackrel{\longrightarrow}{YI_A}$ $\cap$ $\odot (BI_AI_C)$ $=$ $E,F$. Let $O_1$ be center of $\odot (BI_AI_C)$
$$\angle I_CYI_A=180^{\circ}-2\angle I_AFE=\angle I_AO_1F-2\angle O_1FE=90^{\circ}-\angle I_AO_1Y-\angle O_1FE=\angle I_ADI_C-\angle I_AO_1Y$$$$\angle I_ADI_C-\angle I_AO_1Y=\angle I_ADI_C-\angle I_ABI_C=\tfrac{1}{2} (\angle ADC-\angle ABC)=\tfrac{1}{2}(360^{\circ}-2\angle ABC-\angle BCD-\angle DAB)=180^{\circ}-(\angle ABC+\angle BCI+\angle BAI)=180^{\circ}-\angle I_AII_C$$Hence, $YI_CI_AI$ is cyclic and Similarly, $XI_DII_B$ is cyclic $\implies$ $YI$ bisects $\angle AIC$ & $XI$ bisects $\angle BID$. Using, the fact $\angle CID$ $+$ $\angle AIB$ $=$ $180^{\circ}$ $\implies$ $\angle XIY$ $=$ $90^{\circ}$ $\qquad \blacksquare$
This post has been edited 1 time. Last edited by AlastorMoody, Sep 10, 2019, 10:21 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#16 • 2 Y
Y by Pluto04, Adventure10
Not too hard but nice!
fastlikearabbit wrote:
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
Here's the key lemma:

Lemma 1: We have $I_AI_C \perp BD.$
Proof: We just need to show $I_CB^2-I_CD^2=I_AB^2-I_AD^2.$ This is easy using cosine rule and Pitot's theorem. $\square$

Let $S,T$ be the centers of $BI_AI_C$ and $DI_AI_C$ respectively. Here are two corollaries of the above lemma:

Corollary 1: The points $S,T$ lie on $IB,ID$ respectively.
Proof: By the lemma, we get that $DT,DB$ are isogonal in $\angle I_ADI_C.$ But also
$$\angle I_CDI_A=\frac{1}{2}\angle D=\angle IDC \implies \angle I_ADI=\angle I_CDC=\angle BDI_C$$So $DI, DB$ are also isogonal in $\angle I_ADI_C.$ Hence, $T \in DI.$ Similarly $S \in BI.$ $\square$

Corollary 2: We have $ST \parallel BD.$
Proof: Just see that both are perpendicular to $I_AI_C.$ $\square$
[asy]
  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(14cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -4.999905125993694, xmax = 6.960844435565477, ymin = -3.562507651284475, ymax = 4.202883936685942;  /* image dimensions */
pen qqzzff = rgb(0,0.6,1); pen ccwwff = rgb(0.8,0.4,1); pen ffwwzz = rgb(1,0.4,0.6); pen ccqqqq = rgb(0.8,0,0); 

draw((-2.4288478136593787,1.0901400430807582)--(-0.25955984491353046,1.54429430694683)--(4.125856827611618,-2.7638568707290907)--(-3.9416120490338984,-2.7595651023533248)--cycle, linewidth(0.5) + ccwwff); 
draw((-0.48603505340567665,0.7714704399390128)--(-1.9611616324499497,0.5364320276549644)--(-1.6407999043190942,-1.1925016900688314)--(-0.14871777663353036,-1.014156004968163)--cycle, linewidth(0.5) + green); 
 /* draw figures */
draw(circle((-0.917136819796367,-0.6996209717618296), 2.0615528128088307), linewidth(0.5) + qqzzff); 
draw((-2.4288478136593787,1.0901400430807582)--(-0.917136819796367,-0.6996209717618296), linewidth(0.4)); 
draw((-0.917136819796367,-0.6996209717618296)--(-0.25955984491353046,1.54429430694683), linewidth(0.4)); 
draw((-0.917136819796367,-0.6996209717618296)--(4.125856827611618,-2.7638568707290907), linewidth(0.4)); 
draw((-3.9416120490338984,-2.7595651023533248)--(-0.917136819796367,-0.6996209717618296), linewidth(0.4)); 
draw((-2.4288478136593787,1.0901400430807582)--(-0.25955984491353046,1.54429430694683), linewidth(0.5) + ccwwff); 
draw((-0.25955984491353046,1.54429430694683)--(4.125856827611618,-2.7638568707290907), linewidth(0.5) + ccwwff); 
draw((4.125856827611618,-2.7638568707290907)--(-3.9416120490338984,-2.7595651023533248), linewidth(0.5) + ccwwff); 
draw((-3.9416120490338984,-2.7595651023533248)--(-2.4288478136593787,1.0901400430807582), linewidth(0.5) + ccwwff); 
draw(circle((-0.6399687175479255,0.24618729580528861), 1.3526983118026712), linewidth(0.5) + ffwwzz); 
draw(circle((-2.191950403003942,-1.567885566208114), 2.116935519201168), linewidth(0.5) + ffwwzz); 
draw((-0.48603505340567665,0.7714704399390128)--(-1.9611616324499497,0.5364320276549644), linewidth(0.5) + green); 
draw((-1.9611616324499497,0.5364320276549644)--(-1.6407999043190942,-1.1925016900688314), linewidth(0.5) + green); 
draw((-1.6407999043190942,-1.1925016900688314)--(-0.14871777663353036,-1.014156004968163), linewidth(0.5) + green); 
draw((-0.14871777663353036,-1.014156004968163)--(-0.48603505340567665,0.7714704399390128), linewidth(0.5) + green); 
draw((-2.191950403003942,-1.567885566208114)--(2.10703572759203,3.457092593501731), linewidth(0.4) + linetype("2 2")); 
draw((-3.9416120490338984,-2.7595651023533248)--(-0.25955984491353046,1.54429430694683), linewidth(0.5) + ccqqqq); 
draw((-2.4288478136593787,1.0901400430807582)--(4.125856827611618,-2.7638568707290907), linewidth(0.5) + ccqqqq); 
draw((-0.917136819796367,-0.6996209717618296)--(2.10703572759203,3.457092593501731), linewidth(0.4)); 
draw((-0.14871777663353036,-1.014156004968163)--(-1.9611616324499497,0.5364320276549644), linewidth(0.4)); 
draw((-1.9611616324499497,0.5364320276549644)--(-3.9416120490338984,-2.7595651023533248), linewidth(0.4)); 
draw((-3.9416120490338984,-2.7595651023533248)--(-0.14871777663353036,-1.014156004968163), linewidth(0.4)); 
draw((-1.9611616324499497,0.5364320276549644)--(-0.25955984491353046,1.54429430694683), linewidth(0.4)); 
draw((-0.25955984491353046,1.54429430694683)--(-0.14871777663353036,-1.014156004968163), linewidth(0.4)); 
draw((-3.275347307114448,0.25081373291180575)--(2.10703572759203,3.457092593501731), linewidth(0.4)); 
draw((2.10703572759203,3.457092593501731)--(-0.22747406173625173,-2.3567129852644157), linewidth(0.4)); 
 /* dots and labels */
dot((-0.917136819796367,-0.6996209717618296),dotstyle); 
label("$I$", (-0.8045471524049737,-0.9475148764188879), NE * labelscalefactor); 
dot((-2.835865702781308,0.05435480609801824),linewidth(4pt) + dotstyle); 
dot((-1.3395775135209669,1.318185723708646),linewidth(4pt) + dotstyle); 
dot((0.5275882124686249,0.7710148027067911),linewidth(4pt) + dotstyle); 
dot((-0.9182335337781975,-2.7611734928532625),linewidth(4pt) + dotstyle); 
dot((-2.4288478136593787,1.0901400430807582),linewidth(4pt) + dotstyle); 
label("$A$", (-2.6350420948108924,1.1672184110811086), NE * labelscalefactor); 
dot((-0.25955984491353046,1.54429430694683),linewidth(4pt) + dotstyle); 
label("$B$", (-0.2588095298243271,1.6788474322504625), NE * labelscalefactor); 
dot((4.125856827611618,-2.7638568707290907),linewidth(4pt) + dotstyle); 
label("$C$", (4.266264924073534,-3.0167700287038306), NE * labelscalefactor); 
dot((-3.9416120490338984,-2.7595651023533248),linewidth(4pt) + dotstyle); 
label("$D$", (-4.226776827337778,-3.0281395625075938), NE * labelscalefactor); 
dot((-0.48603505340567665,0.7714704399390128),linewidth(4pt) + dotstyle); 
label("$I_B$", (-0.4066134692732522,0.8033933293606791), NE * labelscalefactor); 
dot((-0.14871777663353036,-1.014156004968163),linewidth(4pt) + dotstyle); 
label("$I_C$", (0.0026897476622327163,-1.2999704243355539), NE * labelscalefactor); 
dot((-1.6407999043190942,-1.1925016900688314),linewidth(4pt) + dotstyle); 
label("$I_D$", (-1.6686317214909974,-1.4477743637844784), NE * labelscalefactor); 
dot((-1.9611616324499497,0.5364320276549644),linewidth(4pt) + dotstyle); 
label("$I_A$", (-2.2939560806979884,0.6328503223042278), NE * labelscalefactor); 
dot((0.615309870914632,-0.2578646738379675),linewidth(4pt) + dotstyle); 
dot((-1.3322473202308909,1.408315971564181),linewidth(4pt) + dotstyle); 
dot((2.10703572759203,3.457092593501731),linewidth(4pt) + dotstyle); 
label("$Y$", (2.1515316365735284,3.5434509760676636), NE * labelscalefactor); 
dot((-0.6399687175479255,0.24618729580528861),linewidth(4pt) + dotstyle); 
label("$S$", (-0.8386557538162641,0.40545964622895936), NE * labelscalefactor); 
dot((-2.191950403003942,-1.567885566208114),linewidth(4pt) + dotstyle); 
label("$T$", (-2.339434215913042,-1.4364048299807148), NE * labelscalefactor); 
dot((-1.2854592253228834,0.34514599057340617),linewidth(4pt) + dotstyle); 
dot((-3.275347307114448,0.25081373291180575),linewidth(4pt) + dotstyle); 
dot((-0.22747406173625173,-2.3567129852644157),linewidth(4pt) + dotstyle); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Clearly $Y$ lies on $I_AI_C.$ If $r_b,r_d$ are the radii of $BI_AI_C, DI_AI_C$ respectively, then
$$\frac{YS}{YT}=\frac{r_b}{r_d}=\frac{SB}{TD}=\frac{SI}{TI}$$This, by sine rule, implies that $YI$ bisects $\angle BID$ externally. We get a similar result for $XI.$ Now since $\angle AID+\angle BIC=\pi,$ hence we get $\angle XIY=\pi/2,$ so done. $\blacksquare$
This post has been edited 5 times. Last edited by Wizard_32, Dec 30, 2019, 5:50 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IndoMathXdZ
691 posts
#17 • 1 Y
Y by Adventure10
Nice problem, posting for storage!
fastlikearabbit wrote:
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
Denote as $O_C$ the circumcenter of $CI_BI_D$ and $O_A$ the circumcenter of $AI_BI_D$.

Claim 01. $I_BI_D \perp AC$.
Proof. We'll prove that the incircles of $\triangle ABC$ and $\triangle ACD$ tangent together at a point on $AC$.
To prove this, notice that $BC + AC - AB = CD + CA - AD$ by Pitot Theorem, and therefore the statement is true.

Claim 02. $C, O_C, I$ are collinear.
Proof. Notice that
\[ \angle I C I_D = \angle ICD - \angle I_D C D = \frac{1}{2} \angle BCD - \frac{1}{2} \angle ACD  = \frac{1}{2} \angle ABC = \angle I_B C A = 90^{\circ} - \angle CI_BI_D = \angle O_C C I_D \]Similarly, $A,O_A, I$ are collinear as well.

Claim 03. $O_C O_A \parallel AC$
Proof. This immediately follows after notice that $O_C O_A \perp I_B I_D$ and $I_B I_D \perp AC$ by Claim 01.

Claim 04. $XI$ is the external angle bisector of $\angle CIA$.
Denote $R_C$ and $R_A$ as the radius of the circumcircle of $(CI_BI_D)$ and $(AI_BI_D)$. Now, notice that \[ \frac{XO_C}{XO_A} = \frac{R_C}{R_A} = \frac{O_C C}{O_A A} = \frac{O_C I}{O_AI} \]Therefore, by Sine Rule,
\[ \frac{O_C X}{O_A X} = \frac{\frac{IO_C}{\sin \angle O_C XI}}{\frac{IO_A}{\sin \angle O_A X I}} =  \frac{\frac{O_C X}{\sin \angle XIO_C}}{\frac{O_A X}{\sin XIO_A} }\]which concludes that $XI$ is the external angle bisector of $\angle CIA$.
Similarly, $YI$ is the external angle bisector of $\angle BID$.
Claim 05. $\angle CIX - \angle DIY = \frac{1}{2} ( \angle CID - \angle AIB)$
Proof.
Notice that $\angle ACI = \angle ACI_D - \angle ICI_D = \angle ACI_D - \angle I_B C A = \frac{1}{2} ( \angle ACD - \angle ACB)$. Therefore,
\[ \angle CIX - \angle DIY = \frac{1}{2} ( \angle ACI + \angle CAI - \angle BDI - \angle DBI) = \frac{1}{4} ( \angle ABC + \angle BAD - \angle BCD - \angle ADC) = \frac{1}{2} ( \angle CID - \angle AIB) \]
Hence,
\[ \angle XIY = \angle XID + \angle DIY = \angle CID - \angle CIX + \angle DIY = \frac{1}{2} (\angle AIB + \angle CID) = 90^{\circ}  \]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheUltimate123
1740 posts
#18 • 3 Y
Y by amar_04, Quidditch, Adventure10
Nice problem.

Lemma: Circles $\omega_A$ and $\omega_C$, with the radius of $\omega_A$ less than the radius of $\omega_C$, intersect at two points $I_B$ and $I_D$. Point $A$ is chosen on the circumference of $\omega_A$ but not in the interior of $\omega_C$. Point $C$ is chosen on the circumference of $\omega_C$ but not in the interior of $\omega_A$. If the common external tangents of $\omega_A$ and $\omega_C$ intersect at $X$, then $\angle I_BXI_D=\angle I_BAI_D-\angle I_BCI_D$.

Proof. Denote by $\bullet'$ the homothety at $X$ sending $\omega_C$ to $\omega_A$. Then $X=\overline{I_BI_B'}\cap\overline{I_DI_D'}$, so with arcs taken with respect to $\omega_A$, \[\angle I_BXI_D=\frac{\widehat{I_BI_D}-\widehat{I_B'I_D'}}2=\angle I_BAI_D-\angle I_B'C'I_D'=\angle I_BAI_D-\angle I_BCI_D,\]as claimed.


[asy]
            size(8cm); defaultpen(fontsize(10pt));
            pen pri=heavyblue;
            pen sec=heavycyan;
            pen tri=purple;
            pen qua=heavygreen;
            pen fil=invisible;
            pen sfil=invisible;
            pen tfil=invisible;

            real t=53.75;
            pair I,WW,X,Y,Z,A,B,C,D,IB,ID,T,U1,U2;
            I=(0,0);
            WW=dir(150+t);
            X=dir(90+t);
            Y=dir(10+t);
            Z=dir(250+t);
            A=2*WW*X/(WW+X);
            B=2*X*Y/(X+Y);
            C=2*Y*Z/(Y+Z);
            D=2*Z*WW/(Z+WW);
            IB=incenter(A,B,C);
            ID=incenter(A,D,C);
            T=2*foot(circumcenter(I,IB,ID),I,incenter(I,IB,ID))-I;
            U1=intersectionpoint(circle( (circumcenter(C,IB,ID)+T)/2,length(circumcenter(C,IB,ID)-T)/2),circumcircle(C,IB,ID));
            U2=reflect(T,circumcenter(C,IB,ID))*U1;

            pair O1,O2,IBp,IDp,Cp;
            O1=circumcenter(A,IB,ID);
            O2=circumcenter(C,IB,ID);
            IBp=T+(IB-T)*(O1-T)/(O2-T);
            IDp=T+(ID-T)*(O1-T)/(O2-T);
            Cp=T+(C-T)*(O1-T)/(O2-T);

            draw(U1--T--U2,qua);
            filldraw(circumcircle(A,IB,ID),sfil,sec);
            filldraw(circumcircle(C,IB,ID),sfil,sec);
            draw(IB--T--ID,pri+Dotted);
            draw(T--C,tri+Dotted);

            dot("$A$",A,NW);
            dot("$C$",C,E);
            dot("$C'$",Cp,SE);
            dot("$I_B$",IB,dir(110));
            dot("$I_B'$",IBp,SE);
            dot("$I_D$",ID,dir(250));
            dot("$I_D'$",IDp,NE);
            dot("$X$",T,W);
        [/asy] $\blacksquare$



Claim: $I_BII_DX$ is cyclic.

Proof. Without loss of generality the radius of $(AI_BI_D)$ is less than the radius of $(CI_BI_D)$. By the lemma, $\angle I_BXI_D=\angle I_BAI_D-\angle I_BCI_D$. However \[\angle I_BII_D=360^\circ-A-\frac B2-\frac D2=180^\circ-\frac A2+\frac C2=180^\circ-\angle I_BAI_D+\angle I_BCI_D,\]so $I_BII_DX$ is cyclic. $\blacksquare$



[asy]
        size(8cm); defaultpen(fontsize(10pt));
        pen pri=heavyblue;
        pen sec=heavycyan;
        pen tri=purple;
        pen qua=heavygreen;
        pen fil=invisible;
        pen sfil=invisible;
        pen tfil=invisible;

        real t=53.75;
        pair I,WW,X,Y,Z,A,B,C,D,IB,ID,T,U1,U2;
        I=(0,0);
        WW=dir(150+t);
        X=dir(90+t);
        Y=dir(10+t);
        Z=dir(250+t);
        A=2*WW*X/(WW+X);
        B=2*X*Y/(X+Y);
        C=2*Y*Z/(Y+Z);
        D=2*Z*WW/(Z+WW);
        IB=incenter(A,B,C);
        ID=incenter(A,D,C);
        T=2*foot(circumcenter(I,IB,ID),I,incenter(I,IB,ID))-I;
        U1=intersectionpoint(circle( (circumcenter(C,IB,ID)+T)/2,length(circumcenter(C,IB,ID)-T)/2),circumcircle(C,IB,ID));
        U2=reflect(T,circumcenter(C,IB,ID))*U1;

        filldraw(circumcircle(IB,I,ID),tfil,tri);
        draw(U1--T--U2,qua);
        filldraw(circumcircle(A,IB,ID),sfil,sec);
        filldraw(circumcircle(C,IB,ID),sfil,sec);
        filldraw(A--B--C--D--cycle,fil,pri);
        draw(B--I--D,pri);
        draw(A--C,pri);
        //filldraw(circle(I,1),fil,pri);
        filldraw(incircle(A,B,C),fil,pri);
        filldraw(incircle(A,D,C),fil,pri);

        dot("$I$",I,E);
        dot("$A$",A,W);
        dot("$B$",B,N);
        dot("$C$",C,E);
        dot("$D$",D,S);
        dot("$I_B$",IB,dir(10));
        dot("$I_D$",ID,dir(-10));
        dot("$X$",T,W);
    [/asy]



By symmetry, $XI_B=XI_D$, so $\overline{IX}$ bisects $\angle BID$. Analogously $\overline{IY}$ bisects $\angle AIC$. It is easy to check that $\angle AIB+\angle CID=180^\circ$, so $\overline{AI}$ and $\overline{CI}$ are isogonal with respect to $\angle BID$. Hence $\overline{IX}\perp\overline{IY}$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ducktility
20 posts
#19
Y by
fastlikearabbit wrote:
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.

Solution

Note
This post has been edited 2 times. Last edited by ducktility, Jul 3, 2020, 3:40 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathlogician
1051 posts
#20
Y by
Nice problem.

Claim: $I_BII_DX$ is cyclic.

Proof: To sort configuration issues, suppose that the point $X$ lies closer to $(I_BCI_D)$ than $(I_BAI_D)$. Let $\overline{XI_B}$ and $\overline{XI_D}$ intersect $(I_BCI_D)$ again at points $N$ and $M$, respectively. Now $\angle I_BXI_D = 1/2 (\widehat{I_BI_D} - \widehat{MN}) = \angle I_BCI_D - 1/2( \widehat{MN}) = \angle I_BCI_D - \angle I_BAI_D = \angle C/2 - \angle A/2$, while $\angle I_BII_D = 360^\circ - \angle C - \angle B/2 - \angle D/2 = 180^\circ - \angle C/2 + \angle A/2$, implying the desired result.

Similarly $I_AII_CY$ is cyclic, so by incenter-excenter lemma as $X$ is the arc midpoint of $\widehat{I_BXI_D}$ we find $\overline{IX}$ bisects $\angle BID$, and similarly $\overline{IY}$ bisects $\angle AIC$. Now $\angle AIC+ \angle BID = 180^\circ$ by easy angle chasing, so $\overline{IX}$ is the exterior angle bisector of $\angle AIC$. Thus $\angle XIY = 90^\circ$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#21 • 1 Y
Y by nixon0630
[asy]
size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2.143752258207736, xmax = 2.0400521822554074, ymin = -1.9619602628430035, ymax = 1.6009262041238428;  /* image dimensions */pen zzttff = rgb(0.6,0.2,1); pen zzttqq = rgb(0.6,0.2,0); pen qqwuqq = rgb(0,0.39215686274509803,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); draw((0.2688991041530577,-0.20488190249924387)--(0.343196309386966,-0.1798436523355436)--(0.31815805922326573,-0.10554644710163531)--(0.24386085398935742,-0.13058469726533556)--cycle, linewidth(2) + qqwuqq);  /* draw figures */draw((-1.724052928736652,-1.1476111770905153)--(0.10721516655121223,-0.030815959615788993), linewidth(0.8) + zzttff); draw((0.10721516655121223,-0.030815959615788993)--(0.5387819607844094,-1.0057182971017373), linewidth(0.8) + zzttqq); draw((0.10721516655121223,-0.030815959615788993)--(1.7547138624769931,0.1753890157021572), linewidth(0.8) + zzttff); draw((0.10721516655121223,-0.030815959615788993)--(-0.24717655734806881,1.3264942555025145), linewidth(0.8) + zzttqq); draw(circle((-0.01853208013662149,0.4507924159254678), 0.9050591189518615), linewidth(0.8) + qqwuqq); draw(circle((0.2603461018327108,-0.37673624065269123), 0.6878553299095975), linewidth(0.8) + qqwuqq); draw(circle((-0.7426495270039757,-0.5491042581479939), 1.1495056193662294), linewidth(0.8) + blue); draw(circle((0.8717951742236775,0.06488074836982934), 0.889807556281553), linewidth(0.8) + blue); draw((-0.24717655734806881,1.3264942555025145)--(-1.724052928736652,-1.1476111770905153), linewidth(0.8)); draw((-1.724052928736652,-1.1476111770905153)--(0.5387819607844094,-1.0057182971017373), linewidth(0.8)); draw((0.5387819607844094,-1.0057182971017373)--(1.7547138624769931,0.1753890157021572), linewidth(0.8)); draw((1.7547138624769931,0.1753890157021572)--(-0.24717655734806881,1.3264942555025145), linewidth(0.8)); draw((-0.24717655734806881,1.3264942555025145)--(-0.42721849587105754,-0.3567392691445728), linewidth(0.8) + fuqqzz); draw((-0.42721849587105754,-0.3567392691445728)--(0.5387819607844094,-1.0057182971017373), linewidth(0.8) + fuqqzz); draw((0.5387819607844094,-1.0057182971017373)--(0.7955617418711429,0.055339185104539945), linewidth(0.8) + fuqqzz); draw((0.7955617418711429,0.055339185104539945)--(-0.24717655734806881,1.3264942555025145), linewidth(0.8) + fuqqzz); draw((-0.42721849587105754,-0.3567392691445728)--(0.7955617418711429,0.055339185104539945), linewidth(0.8) + zzttqq); draw((-0.24717655734806881,1.3264942555025145)--(0.5387819607844094,-1.0057182971017373), linewidth(0.8) + zzttqq);  /* dots and labels */dot((0.10721516655121223,-0.030815959615788993),dotstyle); label("$I$", (0.12185915699006185,0.007975926880366944), NE * labelscalefactor);  dot((-0.24717655734806881,1.3264942555025145),linewidth(4pt) + dotstyle); label("$A$", (-0.2329511135792507,1.3569941431074404), NE * labelscalefactor); dot((-1.724052928736652,-1.1476111770905153),linewidth(4pt) + dotstyle); label("$B$", (-1.8554689133701694,-1.1118939896040254), NE * labelscalefactor); dot((0.5387819607844094,-1.0057182971017373),linewidth(4pt) + dotstyle); label("$C$", (0.5542841742464115,-0.9751441978221029), NE * labelscalefactor); dot((1.7547138624769931,0.1753890157021572),linewidth(4pt) + dotstyle); label("$D$", (1.8072079421942964,0.08928661388583438), NE * labelscalefactor); dot((-0.42721849587105754,-0.3567392691445728),linewidth(4pt) + dotstyle); label("$I_{b}$", (-0.5840654438301329,-0.3468343436889455), NE * labelscalefactor); dot((0.3983693400869136,-0.6885284809256835),linewidth(4pt) + dotstyle); label("$I_{c}$", (0.41383844214605864,-0.6572933304370939), NE * labelscalefactor); dot((0.7955617418711429,0.055339185104539945),linewidth(4pt) + dotstyle); label("$I_{d}$", (0.7982162352628138,-0.05855099885137914), NE * labelscalefactor); dot((0.017367587756149494,0.31329770974530463),linewidth(4pt) + dotstyle); label("$I_{a}$", (0.09598757476104948,0.34061055553909736), NE * labelscalefactor); dot((-0.01853208013662149,0.4507924159254678),linewidth(4pt) + dotstyle); label("$O_a$", (-0.15533636689221358,0.4995359892316019), NE * labelscalefactor); dot((-0.7426495270039757,-0.5491042581479939),linewidth(4pt) + dotstyle); label("$O_b$", (-0.8501731467571173,-0.48358413547086804), NE * labelscalefactor); dot((0.8717951742236775,0.06488074836982934),linewidth(4pt) + dotstyle); label("$O_d$", (0.886918802905142,0.09298255420426473), NE * labelscalefactor); dot((0.2603461018327108,-0.37673624065269123),linewidth(4pt) + dotstyle); label("$O_c$", (0.27339271004570576,-0.3468343436889455), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  
[/asy]
CLAIM 1. $I_bI_d\perp AC$
Proof.
Suppose the incircle of $\triangle ABC$ and $ADC$ touches $AC$ at $X_B$ and $X_D$ respectively, then
$$CX_B=\frac{AC+CB-AB}{2}=\frac{AC+CD-AD}{2}=CX_D$$hence $X_B=X_D$, therefore, $I_bI_d\perp AC$, similarly $I_aI_c\perp BD$ $\blacksquare$

CLAIM 2. The circumcenter of $\triangle CI_bI_d$ and $\triangle AI_bI_d$ lies on $AI$ and $CI$ respectively.
Proof.
Let $I_bI_d\cap AC=Z$
Notice that
$$\angle AI_bZ=90^{\circ}-\angle I_bAC=\angle II_bC$$similarly, $\angle AI_dZ=\angle CI_dI$. Notice that $I$ is the isogonal conjugate of itself in $ABCD$, therefore,
$$\angle AII_b+\angle CII_d=\angle AIB+\angle CID=180^{\circ}$$Therefore, $I$ has an isogonal conjugate in $AI_bCI_d$, from above $(I_bI,I_bZ)$ and $(I_dI,I_dZ)$ are isogonal lines. Therefore $(AI,AZ)$ and $(CI,CZ)$ are isogonal lines as well. As a result, the circumcenter of $\triangle CI_bI_d$ and $\triangle AI_bI_d$ lies on $AI$ and $CI$ as desired. $\blacksquare$.
[asy]
size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -26.137041507663255, xmax = 5.310509315849689, ymin = -12.35753595063471, ymax = 14.141973659388436;  /* image dimensions */pen zzttff = rgb(0.6,0.2,1); pen qqwuqq = rgb(0,0.39215686274509803,0); pen ffvvqq = rgb(1,0.3333333333333333,0); pen zzttqq = rgb(0.6,0.2,0);  /* draw figures */draw(circle((-14.135509563806407,0), 4.881560784356673), linewidth(0.8) + zzttff); draw(circle((-9.136957241044206,0), 3.1553593420097803), linewidth(0.8) + zzttff); draw((0,0)--(-14.135509563806407,0), linewidth(0.8) + blue); draw((-18.882061092484275,-1.1401246760660608)--(-11.049708756628332,0.7412113034972723), linewidth(0.8) + qqwuqq); draw((-11.049708756628332,0.7412113034972723)--(-6.1947797650523775,-1.1401246760660608), linewidth(0.8) + qqwuqq); draw((-11.049708756628332,0.7412113034972723)--(0,0), linewidth(0.8) + ffvvqq); draw((0,0)--(-12.44971001170649,4.581235156757253), linewidth(0.8) + ffvvqq); draw((-12.44971001170649,-4.581235156757253)--(0,0), linewidth(0.8) + ffvvqq); draw((-18.882061092484275,-1.1401246760660608)--(-6.1947797650523775,-1.1401246760660608), linewidth(0.8) + blue); draw((-10.248497292213486,-2.953095205348955)--(-10.248497292213486,2.953095205348955), linewidth(0.8) + zzttqq);  /* dots and labels */dot((0,0),dotstyle); label("$Y$", (0.11506604168540333,0.28745826161699845), NE * labelscalefactor); dot((-9.136957241044206,0),dotstyle); label("$O_{d}$", (-9.038810203270724,0.28745826161699845), NE * labelscalefactor); dot((-14.135509563806407,0),dotstyle); label("$O_{b}$", (-14.014340534613245,0.28745826161699845), NE * labelscalefactor); dot((-10.248497292213486,2.953095205348955),linewidth(4pt) + dotstyle); label("$I_{a}$", (-10.138374917379569,3.173815636152715), NE * labelscalefactor); dot((-10.248497292213486,-2.953095205348955),linewidth(4pt) + dotstyle); label("$I_{c}$", (-11.073004924372087,-3.2861270592367453), NE * labelscalefactor); dot((-18.882061092484275,-1.1401246760660608),dotstyle); label("$B$", (-18.769957923133997,-0.867084688197288), NE * labelscalefactor); dot((-6.1947797650523775,-1.1401246760660608),linewidth(4pt) + dotstyle); label("$D$", (-6.097474593029567,-0.9220629239027303), NE * labelscalefactor); dot((-11.049708756628332,0.7412113034972723),linewidth(4pt) + dotstyle); label("$I$", (-10.935559335108481,0.9746862079350261), NE * labelscalefactor); dot((-12.44971001170649,-4.581235156757253),linewidth(4pt) + dotstyle); label("$E$", (-12.584906406271747,-5.320321780338107), NE * labelscalefactor); dot((-8.047284572720484,-2.961233873424497),linewidth(4pt) + dotstyle); label("$F$", (-8.021712842720044,-3.670974709174841), NE * labelscalefactor); dot((-12.44971001170649,4.581235156757253),linewidth(4pt) + dotstyle); label("$G$", (-12.337504345597258,4.795673589463259), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
CLAIM 3. $IY$ is the external angle bisector of $\angle BID$
Proof.
Notice that $Y$ is the external homothetic center of $(I_aI_cD)$ and $(I_aI_cB)$, therefore,
$$\frac{YO_d}{YO_b}=\frac{O_dF}{O_bE}=\frac{O_dD}{O_bB}=\frac{IO_d}{IO_b}$$This proves the CLAIM by angle bisector theorem. $\blacksquare$

We now finish the problem by angle chasing.
$$\angle XIY=\angle YID+\angle XIC-\angle CID=180^{\circ}-\frac{1}{2}(\angle BID+\angle AIC)-\angle CID=180^{\circ}-\frac{1}{2}(\angle BIC+\angle AID)=90^{\circ}$$
This post has been edited 1 time. Last edited by mathaddiction, Dec 24, 2020, 11:07 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
srijonrick
168 posts
#22 • 2 Y
Y by A-Thought-Of-God, Mango247
100th HSO post! :D
fastlikearabbit wrote:
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.

Solved with A-Thought-Of-God.
First, we note that the intouch points of $\odot(I_b)$ and $\odot(I_d)$ on $\overline{AC}$ coincide.

Proof. Let $\odot(I_b)$ and $\odot(I_d)$ touch $\overline{AC}$ at $E$ and $E'$ respectively. By Pitot's $(*)$, we know that $$AE = \frac{AB-BC+CA}{2} \overset{(*)}{=} \frac{DA-CD+CA}{2} = AE'.$$And similarly, we get $CE=CE'$, whence $E \equiv E'.$

So, we get $\overline{I_bI_d} \perp \overline{AC}$. Now, we let $F$ and $G$ denote the centers of $\odot(AI_bI_d)$ and $\odot(CI_bI_d)$. Since, by radical axis, $\overline{FG} \perp \overline{I_bI_d}$, thus $FG$ is parallel to $AC$. Next, as $\angle DAI=\angle I_bAI_d=\tfrac{\angle A}{2}$, on taking out the common part, we have $$\angle IAI_b = \angle DAI_d = \angle I_dAE = 90^{\circ} - \angle AI_dI_b,$$so, $F$ lies on $\overline{IA}$, and similarly, we get that $G$ lies on $\overline{IC}.$ Hence, in $\triangle GIF$, we have $\overline{FG} \parallel \overline{AC}$, with $F \in \overline{IA}$ and $G \in \overline{IC}.\ (\clubsuit)$

Now, it's well known that there exists a homothety at $X$, that takes $\odot(AI_bI_d)$ to $(CI_bI_d),$ so, we have: $$\frac{XF}{XG} = \frac{AF}{CG} \overset{(\clubsuit)}{=} \frac{IF}{IG},$$where the second equality is ratio of radii, by definition. So, $IX$ is the external bisector of $\angle FIG$, which is $\angle AIC.$ Similarly, we have $IY$ as the external bisector of $\angle BID.$

Lastly, we observe that,
\begin{align*}
\angle XIY &= \tfrac{(180^{\circ} - \angle AIC)}{2} + \angle AID + \tfrac{(180^{\circ} - \angle BID)}{2}
\\&= \tfrac{180^{\circ} - (\angle AID + \angle DIC)}{2}  + \angle AID + \tfrac{180^{\circ} - (\angle BIA + \angle AID)}{2}
\\&=180^{\circ} - \cancel{\tfrac{\angle AID}{2}} - \tfrac{\angle CID}{2} + \cancel{\angle AID} - \tfrac{\angle AIB}{2} - \cancel{\tfrac{\angle AID}{2}}
\\&= 180^{\circ} - \left(\tfrac{\angle AIB + \angle CID}{2}\right)
\\&= 180^{\circ} - \tfrac{180^{\circ}}{2} = 90^{\circ}.
\end{align*}since, $\angle AIB + \angle CID = \left(180^{\circ} - \tfrac{\angle A}{2}-\tfrac{\angle B}{2}\right) + \left(180^{\circ} - \tfrac{\angle C}{2} - \tfrac{\angle D}{2}\right) = 180^{\circ}.$ And we're done. $\ \blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Eyed
1065 posts
#23 • 1 Y
Y by greenish
Solved with (for emotional support) Alex Zhao, Amol Rama, Eric Shen, Luke Robitaille, Max Lu, Raymond Feng, William Yue, Yuchan Yang

Swap $I_A, I_C$ and $I_B, I_D$ or something because I can't draw diagrams. First, by Pitot, we have $BC + AD = AB + CD \Rightarrow BC + BD - CD = AB + BD - AD$. Therefore, the incircle centered at $I_C$ and $I_A$ have the same foot to $BD$, which means $I_AI_C \perp BD$. Similarly, $I_BI_D\perp AC$.

Now, observe that
\[\angle IDI_C = \frac{1}{2}(\angle ADC - \angle ADB) = \angle BDI_A = 90 - \angle I_CI_AD\]Therefore, the circumcenter of $(DI_AI_C)$ is on $DI$. Similarly, the circumcenter of $(BI_AI_C)$ is on $BI$. Let these two circumcenters be $F,E$ respectively. Then, $Y\in EF$. Now, since $EF\perp I_BI_D$, we have $EF || BD$, which means
\[\frac{IE}{IF} = \frac{EB}{FD} = \frac{EY}{FY}\]so $YI$ is the angle bisector of $\angle BID$. Similarly, $XI$ is the angle bisector of $\angle AIC$. Now, we have
\[\angle XIY = \angle YIB + \angle BIC + \angle CIX = 90 + 90 - \frac{1}{2}(\angle BID + \angle AIC) + \angle BIC\]\[= 180 - \frac{1}{2}(360 - C - \frac12B - \frac12D + 360 - B - \frac12A - \frac12C) + 180 - \frac12B - \frac12C = \frac{1}{4}(A + B + C + D) = 90\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#24 • 2 Y
Y by centslordm, megarnie
Let $O_A,O_B,O_C,$ and $O_D$ be the circumcenters of triangles $DAB,ABC,BCD$ and $CDA.$ Let $(I_a)$ and $(I_c)$ touch $\overline{BD}$ at $T_a$ and $T_c.$ By Pitot, $$DT_a=\frac{-AB+AD+BD}{2}=\frac{CD-BC+BD}{2}=DT_c$$so $T_a=T_c.$ Hence, $\overline{I_aI_c}\perp\overline{BD}$ and similarly $\overline{I_bI_d}\perp\overline{AC}.$ Since $\angle I_dCI_b=\tfrac{1}{2}\angle B$ and $$\angle I_dCA=90-\angle I_bI_cC=\angle O_CCI_b,$$we know $$\angle O_CCB=\angle I_bCB+\angle I_dCA=\tfrac{1}{2}\angle B$$so $O_C$ lies on $\overline{IC}.$ Similarly, $O_A,O_B,$ and $O_D$ lie on $\overline{IA},\overline{IB},$ and $\overline{ID}.$ Notice $\overline{O_AO_C}\parallel\overline{AC}$ as $\overline{AC}$ and $\overline{I_bI_d}$ are the radical axes of $\{(I_b),(I_d)\}$ and $\{(O_A),(O_C)\}.$ Thus, $$\frac{XO_A}{XO_C}=\frac{O_AO}{O_CO}=\frac{IO_A}{IO_C}$$and $\overline{XI}$ is the external angle bisector of $\angle AIC.$ Similarly, $\overline{YI}$ is the external angle bisector of $\angle BID.$ Also, $$\angle AID=\tfrac{1}{2}(\angle A+\angle D)=180-\tfrac{1}{2}(\angle B+\angle C)=180-\angle BIC=\angle AIB$$so $\overline{XI}$ is the internal angle bisector of $\angle BID.$ $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Inconsistent
1455 posts
#25
Y by
When you FINALLY figure out what the end condition means...

Let $O_a, O_b, O_c, O_d$ be the circumcenters and let $R_a, R_b, R_c, R_d$ be the radii of $DAB, ABC, BCD, CDA$ respectively.

Claim: $X, I_b, I_d, I$ lie on an Appollonius circle of $O_bO_d$.

Proof: Clearly, $I_b, I_d$ lie on the circle with ratio $\frac{R_b}{R_d}$. Since $X$ lies on the perpendicular bisector of $I_bI_d$, $\frac{XO_b}{XO_d} = \frac{R_b}{R_d}$. Now notice $\frac{d(A, I)}{d(C, I)} = \frac{\sin(\frac{C}{2})}{\sin(\frac{A}{2}} = \frac{R_b}{R_d}$ by LoS, and so $\frac{O_bI}{O_dI} = \frac{d(A, I)-R_b}{d(C, I)-R_d} = \frac{R_b}{R_d}$ and we are done.

Since $XO_b = XO_d$, it follows that $XI$ is the angle bisector of $I_bII_d$, which is $AIC$. Similarly, $YI$ is the angle bisector of $BID$, so let $a, b, c, d$ be the angle measures of $IA, IB, IC, ID$, then $\angle (XI, YI) = \frac{\frac{a+c}{2}+\frac{b+d}{2}+\pi}{2}-\frac{\frac{a+c}{2}+\frac{b+d}{2}}{2} = \frac{\pi}{2}$ so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JAnatolGT_00
559 posts
#26
Y by
Claim. $X$ lies on external bisector of angle $AIC.$
Proof. Denote by $O_A,O_C$ circumcenters of $AI_BI_D,CI_BI_D$ respectively. Let $K$ be projection of $I_B$ onto $AC.$ $$|AK|=\frac{|AB|+|AC|-|BC|}{2}=\frac{|AD|+|AC|-|CD|}{2}\implies I_D\in I_BK.$$$$\angle I_BAC=\frac{\angle BAC}{2}=\frac{\angle BAD-\angle CAD}{2}=\angle IAD-\angle I_DAD=\angle IAI_D\stackrel{AC\perp I_BI_D}{\implies} O_A\in AI,O_C\in CI.$$$$O_AO_C\perp I_BI_D\implies \overline{XO_AO_C}\parallel AC\implies \frac{|XO_A|}{|XO_C|}=\frac{|AI_A|}{|CI_C|}=\frac{|II_A|}{|II_C|}\text{ } \Box$$
Analogously $Y$ lies on external bisector of $BID.$ Hence $$\measuredangle XIY\stackrel{\text{mod } \pi}{\equiv} \measuredangle XIA+\measuredangle AIB+\measuredangle BIY=\frac{\measuredangle CIA+\measuredangle AIB+\measuredangle DIC+\measuredangle BID}{2}=\frac{\pi}{2}.$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HoRI_DA_GRe8
588 posts
#27 • 1 Y
Y by amar_04
This was going to be the last geo for me in a while and I am happy that I could solve a G7.
ISL 2017 G7 wrote:
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.

https://photos.app.goo.gl/CY68dhhvzBkHAMAX9

Say the incircle of $\triangle ACD$ and $\triangle BAC$ touch $AC$ at $J$ and $J'$ respectively,we claim that $J \equiv J'$
For the proof,we can just note that
$$CJ=\frac{AC+CD-AD}{2}\stackrel{\text{By Pitot,} CD-AD=CB-AB}=\frac{AC+CB-AB}{2}=CJ'\implies J\equiv J'$$So we get that $I_bI_d \perp AC$,similarly $I_aI_c \perp BD$
Claim : The centre of $\odot(\triangle AI_bI_d)$ lies on $AI$ and similarly other symmetric cases hold.
Proof :Just by angle chasing note that
$$\angle CAI_d=\frac{\angle CAD}{2}=\frac{\angle A-\angle BAC}{2}=\angle IAB-\angle BAI_b=\angle IAI_b$$Or $AI,AC$ are isogonal w.r.t $\angle I_bAI_d$ and the proof follows easily $\blacksquare$
Again if the centres of $\odot(\triangle I_bAI_d),\odot(\triangle I_bCI_d)$ are $E,F$ respectively, we have $EF\perp I_bI_d$ or $EF \parallel AC$.
Thus we have,
$$\frac{IE}{IF}=\frac{EA}{FC}=\frac{I_bE}{I_bF}=\frac{I_cE}{I_cF}=\frac{XE}{XF}$$Or $X,I_b,I,I_d$ lie on the appolonian circle of $EF$
So keeping in mind that $XI_b=XI_d$,(an angle chase wrt above figure,bcoz directed angles is a headache)
$$\angle XII_d=\angle XI_bI_d=90-\frac{\angle I_bXI_d}{2}=\frac{\angle I_bII_d}{2}=90-\frac{\angle A-\angle C}{4}$$Similarly $\angle YII_c=90-\frac{\angle B-\angle D}{4}$
Finally,
$$\angle XIY=\angle XII_d+\angle YII_c-\angle I_cII_d=180-\frac{\angle A+\angle B-\angle C-\angle D}{4}-180+\frac{\angle C+\angle D}{2}=\frac{\angle A+\angle B+\angle C+\angle D}{4}=90\text{ }\blacksquare$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1677 posts
#28
Y by
Let the perpendiculars from $I_A$ and $I_C$ to $BD$ be $H_A$ and $H_C$, respectively. Note that \begin{align*}
BH_A+DH_C &= \frac{AB+BD-AD}{2} + \frac{BD+CD-BC}{2} \\
&= BD + \frac{AB-AD}{2} + \frac{CD-CB}{2} \\
&= BD
\end{align*}so $H_A=H_C$. Thus, $I_AI_C\perp BD$ and thus $I_BI_D\perp AC$. Also note that
\begin{align*}
\measuredangle I_AAI_D &= \angle I_AAD - \angle I_DAD \\
&= \frac{1}{2}\angle BAD - \frac{1}{2} CAD \\
&= \frac{1}{2} \angle BAC\\
&= \angle I_BAC
\end{align*}which implies that lines $AC$ and $AI_A$ are isogonal conjugates of $\triangle AI_BI_D$. Since $AC$ is the height, the circumcenter lies on $AI_A$ and analogously for the others. If $O_A$ is the circumcenter, and $r_A$ is the radius of $\triangle AI_BI_D$ and similarly for the others , then $O_AO_C\perp I_BI_D\implies O_AO_C\parallel AC$. Of course,
\[\frac{XO_A}{XO_C} = \frac{r_A}{r_C} = \frac{IO_A}{IO_C}\]so $XI$ is external angle bisector of $\angle AIC$. The rest is easy.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
asdf334
7586 posts
#29
Y by
yo necesito draw better diagrams.

solved with hints...

so i was apparently trolling and this basically means a few things... the otis hints are really trivial ($I_bI_d\perp AC$ and $A,O_a,I_a$ collinear) and are guessable by GOOD DIAGRAM then question is TRIVIAL!!

but i figure 9 circles is TOO MUCH

of course this is all an excuse

anyhow grammar mode activate
Note that $I_bI_d\perp AC$ and also $O_a,A,I_a$ collinear by simple angle chase. Now it's actually really easy to finish the problem, just let $\triangle IAC$ be reference triangle and we can very easily prove that $IX$ is the external angle bisector of $\angle IAC$ and this finishes.
?????
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_comb01
662 posts
#30
Y by
Easy for G7
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = 4.21311639354001735, xmax = 14.53659904086638, ymin = -5.656907610062613, ymax = 3.527370734524888;  /* image dimensions */
pen ccqqqq = rgb(0.8,0,0); pen ttffcc = rgb(0.2,1,0.8); pen zzttqq = rgb(0.6,0.2,0); pen zzttff = rgb(0.6,0.2,1); pen fuqqzz = rgb(0.9568627450980393,0,0.6); 
 /* draw figures */
draw(circle((9.099803611438881,-0.07039905466048299), 2.630325328126618), linewidth(0.4) + blue); 
draw((4.9806187523028,2.0059278975238763)--(13.557020271534624,3.213397967865753), linewidth(0.4)); 
draw((10.910875308061208,-2.396449957127247)--(13.557020271534624,3.213397967865753), linewidth(0.4)); 
draw((10.910875308061208,-2.396449957127247)--(7.708986081213806,-3.0224301498091215), linewidth(0.4)); 
draw((7.708986081213806,-3.0224301498091215)--(4.9806187523028,2.0059278975238763), linewidth(0.4)); 
draw((4.9806187523028,2.0059278975238763)--(10.910875308061208,-2.396449957127247), linewidth(0.4)); 
draw((7.708986081213806,-3.0224301498091215)--(13.557020271534624,3.213397967865753), linewidth(0.4)); 
draw(circle((7.4132392794113775,0.779734915757124), 2.72418645790703), linewidth(0.8) + ccqqqq); 
draw(circle((9.841331129800457,-1.0227803195798681), 1.7409460136290875), linewidth(0.8) + ccqqqq); 
draw((xmin, -0.3174952089635348*xmin + 0.2752090692787356)--(xmax, -0.3174952089635348*xmax + 0.2752090692787356), linewidth(0.4)); /* line */
draw((xmin, -1.4584388675378843*xmin + 16.408792633404605)--(xmax, -1.4584388675378843*xmax + 16.408792633404605), linewidth(0.4)); /* line */
draw(circle((8.48348953311948,-1.378534941675286), 1.8172085880105169), linewidth(0.4) + ttffcc); 
draw(circle((11.074933574959118,1.3847525316145934), 3.082969104749397), linewidth(0.4) + ttffcc); 
draw((xmin, 0.5165569906877668*xmin-7.806074319434048)--(xmax, 0.5165569906877668*xmax-7.806074319434048), linewidth(0.4)); /* line */
draw((xmin, 2.2842641046452323*xmin-16.225739256076864)--(xmax, 2.2842641046452323*xmax-16.225739256076864), linewidth(0.4)); /* line */
draw((4.763042966882245,-5.345691177944823)--(9.099803611438881,-0.07039905466048299), linewidth(0.4)); 
draw((9.099803611438881,-0.07039905466048299)--(14.140561142419045,-4.214351345495239), linewidth(0.4)); 
draw((4.9806187523028,2.0059278975238763)--(9.099803611438881,-0.07039905466048299), linewidth(0.4) + linetype("4 4") + zzttqq); 
draw((9.099803611438881,-0.07039905466048299)--(7.708986081213806,-3.0224301498091215), linewidth(0.4) + linetype("4 4") + zzttqq); 
draw((9.099803611438881,-0.07039905466048299)--(10.910875308061208,-2.396449957127247), linewidth(0.4) + linetype("4 4") + zzttqq); 
draw((9.099803611438881,-0.07039905466048299)--(13.557020271534624,3.213397967865753), linewidth(0.4) + linetype("4 4") + zzttqq); 
draw((8.284233544006437,-1.8014587709867753)--(14.140561142419045,-4.214351345495239), linewidth(0.4) + linetype("4 4") + zzttff); 
draw((14.140561142419045,-4.214351345495239)--(10.136045862947704,0.6930390906253435), linewidth(0.4) + linetype("4 4") + zzttff); 
draw(circle((11.517592114184627,-2.267167331656569), 3.2667249818167865), linewidth(0.8) + linetype("4 4") + fuqqzz); 
 /* dots and labels */
dot((9.099803611438881,-0.07039905466048299),dotstyle); 
label("$I$", (9.158497324539995,0.06335823750561373), NE * labelscalefactor); 
dot((4.9806187523028,2.0059278975238763),dotstyle); 
label("$A$", (5.03088090088867,2.1338024885975937), NE * labelscalefactor); 
dot((7.708986081213806,-3.0224301498091215),dotstyle); 
label("$B$", (7.764929078612698,-2.8963152752733063), NE * labelscalefactor); 
dot((10.910875308061208,-2.396449957127247),dotstyle); 
label("$C$", (10.96350000497916,-2.2592555057065433), NE * labelscalefactor); 
dot((13.557020271534624,3.213397967865753),linewidth(4pt) + dotstyle); 
label("$D$", (13.604643632974701,3.2088408497415064), NE * labelscalefactor); 
dot((8.150797104401708,0.40795961477123666),linewidth(4pt) + dotstyle); 
label("$I_{A}$", (8.202907670189848,0.5146089076154042), NE * labelscalefactor); 
dot((8.284233544006437,-1.8014587709867753),linewidth(4pt) + dotstyle); 
label("$I_{B}$", (8.335628455516257,-1.7018282073356257), NE * labelscalefactor); 
dot((10.287639578496835,-1.595996814434777),linewidth(4pt) + dotstyle); 
label("$I_{C}$", (10.339712313945036,-1.4894749508133713), NE * labelscalefactor); 
dot((10.136045862947704,0.6930390906253435),linewidth(4pt) + dotstyle); 
label("$I_{D}$", (10.193719450085986,0.7933225568008632), NE * labelscalefactor); 
dot((6.58887500465512,-1.816727177158862),linewidth(4pt) + dotstyle); 
dot((9.660006444005077,2.3202637748012194),linewidth(4pt) + dotstyle); 
dot((9.317484945030856,-2.9930623354502837),linewidth(4pt) + dotstyle); 
dot((6.818810387718425,-0.6497754510297877),linewidth(4pt) + dotstyle); 
dot((4.763042966882245,-5.345691177944823),linewidth(4pt) + dotstyle); 
label("$X$", (4.818527644366416,-5.245473175550745), NE * labelscalefactor); 
dot((14.140561142419045,-4.214351345495239),linewidth(4pt) + dotstyle); 
label("$Y$", (14.188615088410902,-4.104074421743628), NE * labelscalefactor); 
dot((10.397957490099442,-2.6723439338098007),linewidth(4pt) + dotstyle); 
label("$F$", (10.445888942206164,-2.5645133119572843), NE * labelscalefactor); 
dot((11.581395307027336,-1.0781850260834738),linewidth(4pt) + dotstyle); 
label("$G$", (11.640376010143846,-0.9718638880403763), NE * labelscalefactor); 
dot((7.4132392794113775,0.779734915757124),linewidth(4pt) + dotstyle); 
label("$O_A$", (7.472943350894599,0.8862271065293494), NE * labelscalefactor); 
dot((9.841331129800457,-1.0227803195798681),linewidth(4pt) + dotstyle); 
label("$O_C$", (9.888461643835246,-0.9187755739098127), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */[/asy]
Let $O_A$ and $O_C$ denote the centers of $(AI_BI_D)$ and $(CI_BI_D)$
Let $F = YI_B \cap (CI_BI_D)$, $G = YI_C \cap (CI_BI_D)$
Key Claim : $YI_BI_DI$ is cyclic
Proof
Claim 1: $\measuredangle BIY = \measuredangle YID$
Proof
Claim 2:External angle bisector of $\measuredangle AIC$ is internal angle bisector $\measuredangle BID$
Proof
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Om245
163 posts
#31 • 1 Y
Y by GeoKing
Let $H = AC\cap I_bI_d$

Claim 1: $AH \perp I_bI_d$
Let $B'$ be point where incircle of $\triangle ABC$ touch $AC$, and $D'$ be point where incircle of $\triangle ADC$ touch $AC$.
we have $AB' = \frac{AB+AC-BC}{2}$ and $AD' = \frac{AD+AC-CD}{2}$ , but from $AB+CD = BC+AD$ we have $AB'=AD' \implies B'=D'=H$

Now let $G$ and $J$ be center of $\triangle AI_bI_d$ and $CI_bI_d$.

Claim 2: $GJ \parallel AC$
Note from $\measuredangle HAI_d + \measuredangle DAI_b= \measuredangle I_bAG + \measuredangle DAI_b = \measuredangle DAI$ hence we have $A,G,I$ collinear. Similarly $C,J,I$ are collinear.
As $I_bI_d$ is radical axis of $(AI_bI_d)$ and $(CI_bI_d) \implies GJ \perp I_bI_d$
hence $GJ \parallel AC$.

Observe that $AG$ and $JC$ are radius of $(AI_bI_D)$ and $(CI_bI_d)$ and $X$ is exsimilicenter of these circles.
$$\frac{XG}{XJ} = \frac{AG}{CJ} = \frac{IG}{IJ}$$$XI$ is external angle bisector of $\measuredangle CIA$. Similarly $YI$ is external angle bisector of $\measuredangle BID$

Now just by angle chaseing we have $\angle XIY = 90$.
Attachments:
This post has been edited 1 time. Last edited by Om245, May 3, 2024, 4:44 AM
Reason: image
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ywgh1
138 posts
#32
Y by
2017 g7

Great problem, although easy for G7.

Let $T$ be the intersection of $AC$ with $I_bI_d$.
We use the following lemma.

Lemma: $(I_b)$ and $(I_d)$ are tangent to each other at $AC$.
Which is provable by pitot and easy length chase.

Now for the main idea, we want to show that $YI$ is the external angle bisector of $\angle BID$.
Let $O_1$ and $O_2$ be the centres of $(AI_bI_d)$ and $(CI_bI_d)$.
We start off with the following claim.

Claim: $AC \| O_1O_2$
Proof: We first show that $A-O_1-I$ are collinear by angle chase, now since $I_bI_d$ is the radicle axis of these 2 circles, this implies that $O_1O_2 \perp I_bI_d $, hence we proved our claim. $\blacksquare$

Finally we apply Thales theorem, this will give us that $Y$ lies on the Appolinian circle of $IO_1P_2$ hence we are done.
This post has been edited 1 time. Last edited by Ywgh1, Aug 17, 2024, 8:17 PM
Z K Y
N Quick Reply
G
H
=
a