G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
Tangent Spheres and Tangents to Spheres
Math-Problem-Solving   2
N 21 minutes ago by Math-Problem-Solving
Source: 2002 British Mathematical Olympiad Round 2
Prove this.
2 replies
Math-Problem-Solving
4 hours ago
Math-Problem-Solving
21 minutes ago
Find all sequences satisfying two conditions
orl   33
N 22 minutes ago by AshAuktober
Source: IMO Shortlist 2007, C1, AIMO 2008, TST 1, P1
Let $ n > 1$ be an integer. Find all sequences $ a_1, a_2, \ldots a_{n^2 + n}$ satisfying the following conditions:
\[ \text{ (a) } a_i \in \left\{0,1\right\} \text{ for all } 1 \leq i \leq n^2 + n;
\]

\[ \text{ (b) } a_{i + 1} + a_{i + 2} + \ldots + a_{i + n} < a_{i + n + 1} + a_{i + n + 2} + \ldots + a_{i + 2n} \text{ for all } 0 \leq i \leq n^2 - n.
\]
Author: Dusan Dukic, Serbia
33 replies
orl
Jul 13, 2008
AshAuktober
22 minutes ago
Interesting inequalities
sqing   6
N 28 minutes ago by sqing
Source: Own
Let $ a,b,c\geq 0 $ and $ a+b+c=3 $. Prove that
$$    \frac{a^2}{a^2+b+c+ \frac{3}{2}}+\frac{b^2}{b^2+c+a+\frac{3}{2}}+\frac{c^2}{c^2+a+b+\frac{3}{2}} \leq \frac{6}{7}$$Equality holds when $ (a,b,c)=(0,\frac{3}{2},\frac{3}{2}) $ or $ (a,b,c)=(0,0,3) .$
6 replies
1 viewing
sqing
Today at 3:12 AM
sqing
28 minutes ago
European Mathematical Cup 2016 senior division problem 2
steppewolf   6
N 39 minutes ago by SimplisticFormulas
For two positive integers $a$ and $b$, Ivica and Marica play the following game: Given two piles of $a$
and $b$ cookies, on each turn a player takes $2n$ cookies from one of the piles, of which he eats $n$ and puts $n$ of
them on the other pile. Number $n$ is arbitrary in every move. Players take turns alternatively, with Ivica going
first. The player who cannot make a move, loses. Assuming both players play perfectly, determine all pairs of
numbers $(a, b)$ for which Marica has a winning strategy.

Proposed by Petar Orlić
6 replies
steppewolf
Dec 31, 2016
SimplisticFormulas
39 minutes ago
No more topics!
angles in triangle
AndrewTom   32
N Mar 7, 2025 by Tsikaloudakis
Source: BrMO 2012/13 Round 2
The point $P$ lies inside triangle $ABC$ so that $\angle ABP = \angle PCA$. The point $Q$ is such that $PBQC$ is a parallelogram. Prove that $\angle QAB = \angle CAP$.
32 replies
AndrewTom
Feb 1, 2013
Tsikaloudakis
Mar 7, 2025
angles in triangle
G H J
Source: BrMO 2012/13 Round 2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AndrewTom
12750 posts
#1 • 4 Y
Y by Adventure10, Mango247, Rounak_iitr, ItsBesi
The point $P$ lies inside triangle $ABC$ so that $\angle ABP = \angle PCA$. The point $Q$ is such that $PBQC$ is a parallelogram. Prove that $\angle QAB = \angle CAP$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nilashis
132 posts
#2 • 3 Y
Y by AndrewTom, Adventure10, Mango247
Use sin rule on $\triangle ABQ$, $\triangle ACQ$, $\triangle BAP$, $\triangle CAP$ and comparing them we get that
$\frac{sin\angle BAQ}{sin\angle QAC}=\frac{sin\angle CAP}{sin\angle PAB}$. Now take $\angle BAQ=x$ and $\angle PAC=y$ then the equation reduces to $\frac{sinx}{sin(A-x)}=\frac{siny}{sin(A-y)}$
$2sin(A-x)siny=2sin(A-y)sinx$
$cos(A-x-y)-cos(A-x+y)=cos(A-y-x)-cos(A-y+x)$
$cos(A-x+y)=cos(A-y+x)$
$x-y=y-x$
$x=y$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nsato
15653 posts
#3 • 2 Y
Y by Adventure10, ehuseyinyigit
This appears as an exercise in Geometry Revisited (Section 1.9, Exercise 3).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sunken rock
4378 posts
#4 • 3 Y
Y by AndrewTom, Adventure10, Mango247
It has been posted here around few years ago, with a very nice synthetic solution!

Best regards,
sunken rock
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MMEEvN
252 posts
#5 • 12 Y
Y by sunken rock, AndrewTom, kprepaf, jlammy, 93051, v_Enhance, Med_Sqrt, hakN, Adventure10, Mango247, ohiorizzler1434, ehuseyinyigit
Let $R$ be the point such that $APBR$ is a parallelogram . Hence $AR || BP ||QC$ and $AR=BP=CQ$ Hence $ARQC$ is a parallelogram.$\angle ACQ = \angle ARQ$ . But $ \angle ACQ = \angle ABQ$ . Hence $ARBQ$ is cyclic.
.$\angle PAB=\angle ABR =\angle AQR= \angle QAC$. $ \Longrightarrow \angle QAB=\angle PAC$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jlammy
1099 posts
#6 • 2 Y
Y by Adventure10, Mango247
sunken rock wrote:
It has been posted here around few years ago, with a very nice synthetic solution!

Best regards,
sunken rock

Can you specify the details of this "very nice synthetic solution"?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sunken rock
4378 posts
#7 • 2 Y
Y by Adventure10, Mango247
@jlammy: Like MMEEvN did!

Best regards,
sunken rock
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IDMasterz
1412 posts
#8 • 1 Y
Y by Adventure10
no angle chasing: Let $P'$ be the $P$ isogonal conjugate and $P''$ be its reflection over $BC$. The angle bisectors of $BPC$ and $BAC$ are obviously parallel. $AP, PP''$ are antiparallel wrt $BPC$ so $AP' \parallel PP'' \parallel QP'$ since $PP'QP''$ form a parallelogram, so done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DottedCaculator
7324 posts
#9
Y by
Solution
This post has been edited 1 time. Last edited by DottedCaculator, Dec 10, 2021, 10:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Project_Donkey_into_M4
136 posts
#11
Y by
AndrewTom wrote:
The point $P$ lies inside triangle $ABC$ so that $\angle ABP = \angle PCA$. The point $Q$ is such that $PBQC$ is a parallelogram. Prove that $\angle QAB = \angle CAP$.

For a non complicated solution unlike above here's a hint
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
guptaamitu1
656 posts
#12 • 1 Y
Y by Rounak_iitr
Here's a different proof with similar triangles and homothety (plus reflection in angle bisector)
Let $E = \overline{BP} \cap \overline{AC}, F = \overline{CP} \cap \overline{AB}$. Then points $B,C,E,F$ are concyclic. Using $BPCQ$ is a parallelogram we get
$$ \angle QCB = \angle PBC = \angle EBC = \angle EFC = \angle EFP $$Similarly $\angle QBC = \angle FEP$. Hence,
$$ \triangle QBC \sim \triangle PEF $$[asy]
size(200);
pair B=dir(-160),C=dir(-20),E=dir(70),F=dir(135),A=extension(B,F,C,E),P=extension(B,E,C,F),Q=B+C-P;
draw(unitcircle,cyan);
fill(P--E--F--P--cycle,purple+grey+grey);
fill(B--Q--C--B--cycle,purple+grey+grey);
dot("$A$",A,dir(A));
dot("$B$",B,dir(B));
dot("$C$",C,dir(C));
dot("$E$",E,dir(E));
dot("$F$",F,dir(F));
dot("$P$",P,dir(-90));
dot("$Q$",Q,dir(Q));
draw(A--B--C--A,royalblue);
draw(B--E^^C--F,red);
draw(P--A--Q,green);
draw(B--Q--C^^E--F,brown);
[/asy]
Let $\mathbb H$ denote homothety at $A$ with scale $\frac{AF}{AC} = \frac{AE}{AB}$ followed by reflection in internal angle bisector of $\angle BAC$. Note $\mathbb H(F) = C$ and $\mathbb H(E) = B$. Thus $\mathbb H(P) = P'$ is a point such that $$\triangle PEF \sim \triangle P' BC$$Hence $P' \equiv Q$. As $\mathbb H$ also consists of reflection in internal angle bisector of $\angle BAC$, so $\angle BAP = \angle CAQ$ follows. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TechnoLenzer
55 posts
#13 • 2 Y
Y by ike.chen, allin27x
Let $\infty_1 = BP \cap CQ$ and $\infty_2 = CP \cap BQ$. Since these are parallel pairs of lines, $\infty_1, \infty_2$ are the points at infinity for those pencils of parallel lines respectively. Note that $\measuredangle \infty_1AB = \measuredangle PBA = \measuredangle ACP = \measuredangle CA\infty_2$ by $A\infty_1 \; || \; CP$ and $A\infty_2 \; || \; BP$. Thus, $A\infty_1$ is isogonal to $A\infty_2$ wrt. $\triangle ABC$. Hence by DDIT on complete quadrilateral $P, B, Q, C, \infty_1, \infty_2$, there exists a projective involution swapping $(AB, AC)$, $(A\infty_1, A\infty_2)$, $(AP, AQ)$. This is taking the isogonal, and so $AP, AQ$ are isogonal. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
samrocksnature
8791 posts
#14
Y by
Any complex sols?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AwesomeYRY
579 posts
#15
Y by
Consider the following two series of laws of sines:
\begin{align*}
    \frac{BQ}{\sin(\angle BAQ)} = \frac{AQ}{\sin(\angle ABP + \angle PBQ)} &= \frac{AQ}{\sin(\angle PCA + \angle ACP)} = \frac{CQ}{\sin (\angle QAC)},\\
    \frac{BP}{\sin(\angle BAP)} = \frac{AP}{\sin(\angle ABP)} &= \frac{AP}{\sin(\angle PCA)} = \frac{PC}{\sin(\angle PAC)}.
\end{align*}Putting them together, we get
\[\frac{\sin(\angle QAC)}{\sin(\angle BAQ)} = \frac{CQ}{BQ}= \frac{BP}{PC} = \frac{\sin(\angle BAP)}{\sin(\angle PAC)}\]and since $\angle WAC + \angle BAQ = \angle BAC = \angle BAP + \angle PAC$, we have that $\angle BAP = \angle QAC$ and we're done. $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anurag27826
93 posts
#16
Y by
Amazing problem, although my solution is the same as of guptaamitu1's solution, but still im posting it for the sake of storage.

First of all we claim that $\triangle PEF \sim \triangle BQC$. Note that $\angle EPF = \angle BPC = \angle BQC$. Also note that $\angle PFE = \angle PBC = \angle QCB$. Both angle equalities are there since $BPCQ$ is a parallelogram. So, consider homothety $\psi$ under $A$ follow by reflection along the angle bisector of $\angle BAC$ with scale $\frac{AF}{AC}$. Note that $\psi$ sends $F$ to $C$ and $E$ to $B$. Then $\psi$ sends $P$ to $P'$ such that $\triangle CP'B \sim FPE \implies P' = Q$. So, it also implies that the line $AQ$ is a reflection of the line $AP$ along the angle bisector of $\angle BAC$, which implies $\angle BAP = \angle CAQ$. So, we're done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
OronSH
1728 posts
#17
Y by
Great problem.

We use directed angles. Let $P'$ be the isogonal conjugate of $P.$ Consider the lines through $P'$ parallel to $PB,PC.$ These lines intersect $AB$ at points $D,F$ with $D$ between $A$ and $F,$ and they intersect $AC$ at points $E,G$ with $E$ between $A$ and $G.$ Since $\angle DFE=\angle ABP=\angle PCA=\angle DGE,$ we have that $DEGF$ is cyclic. Also, since $\angle BFP'=\angle ABP=\angle PCA=\angle BCP',$ we have $BFCP'$ is cyclic, and similarly $BCGP'$ is cyclic, so $BFCG$ is cyclic, and by Reim's theorem we have $DE,BC$ parallel. Now, take a homothety at $A$ sending $DE$ to $BC.$ It is not hard to see that this takes $P'$ to $Q,$ so $A,P',Q$ are collinear, and we have $\angle QAB=\angle CAP.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
huashiliao2020
1292 posts
#18
Y by
It states that for a point P inside a triangle ABC with ABP=ACP, the point Q such that BPCQ is a parallelogram, AQ-AP are pairwise isogonal lines.

Here's the first one, quoted from my sl2012g2 (a good application for anyone who's reading!)
Sketch. If we let D be the point s.t. APBD is a parallelogram, we have that BDQ is congruent to APC by a translation of vector AD. (This is just done by length equalities and parallel lines.) Now, from DQB=ACP=ABP=DAB, ADBQ is cyclic. Then BAQ=BRQ=PAC, as desired. $\square$

Second solution I just came up with: Let BP,CP intersect AC,AB at E,F, respectively. It's obvious that $$F\in(BCE)\implies EFP=EBC=QCB,FEP=FCB=CBQ\implies EFP\sim CBQ,AEF\sim ABC\implies AEPF\sim ABQC\implies BAP=FAP=CAQ,$$as desired. $\blacksquare$
This post has been edited 2 times. Last edited by huashiliao2020, Aug 30, 2023, 11:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ianis
399 posts
#19
Y by
Let $P'$ be the isogonal conjugate of $P$ in $ABC$, the angle condition implies that $P'$ is on the perpendicular bisector of $BC$. Use barycentric coordinates with respect to $ABC$ and let $P=(x,y,z)$. Then $P'=\left (\frac{a^2}{x}:\frac{b^2}{y}:\frac{c^2}{z}\right )$ and $Q=B+C-P=(-x,1-y,1-z)=(-x,z+x,x+y)$. We have\begin{align*}\begin{vmatrix}1&0&0\\\dfrac{a^2}{x}&\dfrac{b^2}{y}&\dfrac{c^2}{z}\\-x&z+x&x+y\end{vmatrix} & =\begin{vmatrix}\dfrac{b^2}{y}&\dfrac{c^2}{z}\\z+x&x+y\end{vmatrix} \\
& =b^2\frac{x+y}{y}-c^2\frac{z+x}{z} \\
& =\frac{b^2yz-c^2yz+b^2zx-c^2xy}{yz} \\
& =\frac{x}{a^2}\left ((b^2-c^2)\frac{a^2}{x}+a^2\left (\frac{b^2}{y}-\frac{c^2}{z}\right )\right ) \\
& =0,
\end{align*}where the last equality holds because $P'$ is on the perpendicular bisector of $BC$. Hence $A,P',Q$ are collinear, so $\angle QAB=\angle P'AB=\angle CAP$. Done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
asdf334
7586 posts
#20
Y by
hello;;; ddit with $A$ and $BPCQ$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shendrew7
793 posts
#21
Y by
Trivial by first isogonality lemma.

Let $X = BP \cap CA$ and $Y = CP \cap AB$. Then $BCXY$ is cyclic and $BPCQ$ is a parallelogram, so
\[\angle PXY = \angle BCP = \angle CBQ, \quad \angle PXY = \angle CBP = \angle BCQ.\]
Hence we have $\triangle PXY \sim \triangle QBC$ as well as $\triangle AXY \sim \triangle ABC$, so the quadrilaterals $AXPY$ and $ABQC$ are also similar with opposite orientation, which implies the desired. $\blacksquare$
This post has been edited 1 time. Last edited by shendrew7, Dec 31, 2023, 7:14 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joshualiu315
2513 posts
#22
Y by
Let $R$ be the reflection of $P$ across the midpoint of $\overline{AB}$. It is clear that $ARBP$ is a parallelogram. Then, notice that $\overline{AR} \parallel \overline{BP} \parallel \overline{QC}$, and $AR=BP=QC$. Hence, $ARQC$ is a parallelogram, meaning that $\angle ARQ = \angle ACQ$.

Also, we have

\[\angle ABQ = \angle PBQ+\angle ABP =\angle PCQ+\angle PCA = \angle ACQ.\]
This means that $\angle ABQ = \angle ARQ$, so $ARBQ$ is cyclic. Thus,

\[\angle BAP = \angle ABR = \angle AQR = \angle CAQ. \ \square\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EpicBird08
1741 posts
#23
Y by
Let $H$ be the point such that $APCH$ is a parallelogram. First note that $AH = CP = BQ$ since $BPCQ$ is a parallelogram as well. Additionally, this gives $AH \parallel PC \parallel BQ,$ so $AHQB$ is also a parallelogram. Then $$\measuredangle AHQ = \measuredangle QBA = \measuredangle QBP + \measuredangle PBA = \measuredangle PCQ + \measuredangle ACP = \measuredangle ACQ,$$so $AHCQ$ is cyclic.

Next, note from our three parallelograms that $QC = BP, CH = AP,$ and $QH = AB,$ so $\triangle ABP \cong \triangle HQC.$ Finally, $\angle BAP = \angle QHC = \angle QAC,$ as desired.
This post has been edited 1 time. Last edited by EpicBird08, Jan 13, 2024, 5:09 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dolphinday
1318 posts
#24
Y by
Construct parallelograms $APCR$, $APBS$, and $BPCQ$.
And it follows that $ARQB$ is a parallelogram since $BQ \parallel PC \parallel AR$ and $AP \parallel RC$. Similarly, $ACQS$ is a parallelogram. Then we have $\angle SBP = 180^{\circ} = \angle SAP = \angle QAR = \angle BQA$ so $ASBQ$ is cyclic. Then $\angle CAQ = \angle{AQS} = \angle SBA = \angle{PAB}$ so we are done.
This post has been edited 2 times. Last edited by dolphinday, Feb 4, 2024, 3:53 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1219 posts
#25
Y by
Denote $\angle BAC = \alpha$, $\angle ABP = \angle ACP = x$, $\angle BAP = y$, $\angle CAQ = z$. The Sine Law in $ABP$ and $ACP$ gives $\frac{BP}{\sin y} = \frac{AP}{\sin x} = \frac{CP}{\sin(\alpha - y)}$, i.e. $\frac{CP}{BP} = \frac{\sin(\alpha - y)}{\sin y}$. Analogously $\frac{BQ}{CQ} = \frac{\sin(\alpha - z)}{\sin z}$. However, $CP = BQ$ and $BP = CQ$ from the parallelogram $BPCQ$, thus $\frac{\sin(\alpha - y)}{\sin y} = \frac{\sin(\alpha - z)}{\sin z}$. Hence $\sin\alpha \cot y - \cos \alpha = \sin\alpha \cot z - \cos \alpha$, equivalent to $\cot y = \cot z$, i.e. $y=z$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dolphinday
1318 posts
#26
Y by
Alternate solution involving DDIT;

Apply DDIT on quadrilateral $BC\infty_{BP}\infty_{BQ}$ from point $A$.
Then $B\infty_{BP} \cap C\infty_{BQ} = P$, and $B_\infty{BQ} \cap C\infty_{BP} = Q$, so we get that $(AB, AC)$, $(A\infty_{BP}, A\infty_{BQ})$, and $(AP, AQ)$ are involutions.
However $\angle \infty_{BQ}AC = \angle ACP = \angle ABP = \angle \infty_{BP}AB$, so $(AB, AC)$ and $(A\infty_{BP}, A\infty_{BQ})$ are both involutions around the angle bisector of $\angle BAC$. So it follows that $AP$ and $AQ$ are isogonal as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Martin2001
132 posts
#27
Y by
Let the reflection of $P$ over the midpoint of $AC$ be $K.$ We see that $AKQB$ is a parralelogram. We show $AKCQ$ is cyclic because then $\angle QAC=\angle QKC=\angle BAQ.$ Let $\angle QAC=y, \angle ACP=x.$ Then $a-y=\angle BAQ=\angle KQA.$ Then note that $\angle CAK=x.$ Therefore $$180-a-x=\angle AKQ=\angle ACQ=b+c-x,$$as desired$.\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihatemath123
3441 posts
#28 • 1 Y
Y by OronSH
Vertically stretch about the angle bisector of $\angle BAC$ until $P$ is the orthocenter of $\triangle ABC$, then $Q$ is the antipode so it's obvious.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bachkieu
131 posts
#29
Y by
I think this works?
Let $CQ \cap AB = X, BQ \cap AC = Y$; it's easy to show that $\triangle ABC \sim \triangle AYX$ and that $P$ of $\triangle$ $ABC$ corresponds to $Q$ of $\triangle AYX$.
This post has been edited 1 time. Last edited by bachkieu, Sep 5, 2024, 12:14 AM
Reason: forgot period
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Lleeya
11 posts
#30 • 1 Y
Y by endless_abyss
This is Romanian Lemma, construct $EPFR$ to be parralelogram and trivial by similarity of $AEF$ and $ABC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
endless_abyss
33 posts
#31
Y by
Here's my solution :)
Attachments:
This post has been edited 1 time. Last edited by endless_abyss, Nov 25, 2024, 5:31 PM
Reason: typo haha
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AndreiVila
208 posts
#32 • 2 Y
Y by trigadd123, Ciobi_
Lleeya wrote:
This is Romanian Lemma, construct $EPFR$ to be parralelogram and trivial by similarity of $AEF$ and $ABC$.

Now I can finally go to sleep knowing that we've achieved our goal at MOP. We won.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AshAuktober
954 posts
#33
Y by
Yay!
The given is equivalent to $A\infty_{BP}$, $A\infty_{CP}$ being isogonal. From here Isogonal Line Lemma (or DDIT if you wish) gives the required.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tsikaloudakis
974 posts
#35
Y by
see the figure:
Attachments:
Z K Y
N Quick Reply
G
H
=
a