Y by Adventure10, Mango247
High School Olympiads
Regional, national, and international math olympiads
Regional, national, and international math olympiads
3
M
G
BBookmark
VNew Topic
kLocked
High School Olympiads
Regional, national, and international math olympiads
Regional, national, and international math olympiads
3
M
G
BBookmark
VNew Topic
kLocked
No tags match your search
Malgebra
combinatorics
geometry
inequalities
number theory
IMO
articles
inequalities proposed
function
algebra unsolved
circumcircle
trigonometry
number theory unsolved
inequalities unsolved
polynomial
geometry unsolved
geometry proposed
combinatorics unsolved
number theory proposed
functional equation
algebra proposed
modular arithmetic
induction
geometric transformation
incenter
calculus
3D geometry
combinatorics proposed
quadratics
Inequality
reflection
ratio
logarithms
prime numbers
analytic geometry
floor function
angle bisector
search
parallelogram
integration
Diophantine equation
rectangle
LaTeX
limit
complex numbers
probability
graph theory
conics
Euler
cyclic quadrilateral
No tags match your search
MG
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta 0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introductory: Grades 5-10
Prealgebra 1 Self-Paced
Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Prealgebra 2 Self-Paced
Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Introduction to Algebra A Self-Paced
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability Self-Paced
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B Self-Paced
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2
Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Advanced: Grades 9-12
Olympiad Geometry
Tuesday, Jun 10 - Aug 26
Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17
Group Theory
Thursday, Jun 12 - Sep 11
Contest Preparation: Grades 6-12
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
AMC 12 Final Fives
Sunday, May 18 - Jun 15
AIME Problem Series A
Thursday, May 22 - Jul 31
AIME Problem Series B
Sunday, Jun 22 - Sep 21
F=ma Problem Series
Wednesday, Jun 11 - Aug 27
WOOT Programs
Visit the pages linked for full schedule details for each of these programs!
MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT
Programming
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1
Physics
Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15
Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introductory: Grades 5-10
Prealgebra 1 Self-Paced
Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Prealgebra 2 Self-Paced
Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Introduction to Algebra A Self-Paced
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability Self-Paced
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B Self-Paced
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2
Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Advanced: Grades 9-12
Olympiad Geometry
Tuesday, Jun 10 - Aug 26
Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17
Group Theory
Thursday, Jun 12 - Sep 11
Contest Preparation: Grades 6-12
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
AMC 12 Final Fives
Sunday, May 18 - Jun 15
AIME Problem Series A
Thursday, May 22 - Jul 31
AIME Problem Series B
Sunday, Jun 22 - Sep 21
F=ma Problem Series
Wednesday, Jun 11 - Aug 27
WOOT Programs
Visit the pages linked for full schedule details for each of these programs!
MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT
Programming
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1
Physics
Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15
Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
k i Adding contests to the Contest Collections
dcouchman 1
N
Apr 5, 2023
by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.
Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
k i Zero tolerance
ZetaX 49
N
May 4, 2019
by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:
To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.
More specifically:
For new threads:
a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.
Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"
b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.
Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".
c) Good problem statement:
Some recent really bad post was:
[quote]
[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.
For answers to already existing threads:
d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve
, do not answer with "
is a solution" only. Either you post any kind of proof or at least something unexpected (like "
is the smallest solution). Someone that does not see that
is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.
e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.
To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!
Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).
The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
But please follow the following guideline:
To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.
More specifically:
For new threads:
a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.
Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"
b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.
Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".
c) Good problem statement:
Some recent really bad post was:
[quote]

It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.
For answers to already existing threads:
d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve




Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.
e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.
To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!
Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).
The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
Tangencies with cyclic quadrilateral
tapir1729 21
N
4 minutes ago
by Mathandski
Source: TSTST 2024, problem 4
Let
be a quadrilateral inscribed in a circle with center
and
be the intersection of segments
and
. Let
be the circumcircle of
and
be the circumcircle of
. The tangent to
at
and the tangent to
at
meet at
. The tangent to
at
and the tangent to
at
meet at
. Show that
.
Merlijn Staps




















Merlijn Staps
21 replies
1 viewing
Binary multiples of three
tapir1729 8
N
7 minutes ago
by Mathandski
Source: TSTST 2024, problem 5
For a positive integer
, let
denote the number of
s in the binary representation of
. Prove that for any positive integer
,
Holden Mui





![\[\sum_{i=1}^{n}(-1)^{s(3i)} > 0.\]](http://latex.artofproblemsolving.com/d/e/9/de975cc2632685d7a3f71c023115535d0aeb5dbb.png)
8 replies
Count the number of balanced colorings
TUAN2k8 3
N
18 minutes ago
by TUAN2k8
Source: A book
Given a
grid (
), we color some of its cells black.A coloring is called balanced if each row and each cell contains exactly
black cells.Detemine the number of balanced colorings.



3 replies
Geometry
MathsII-enjoy 3
N
23 minutes ago
by MathsII-enjoy
Given triangle
inscribed in
with
being the midpoint of
. The tangents at
of
intersect at
. Let
be the projection of
onto
. On the perpendicular bisector of
, take a point
that is not on
and different from M. Circle
intersects
at
. Lines
and
intersect at
. Prove that
is an isosceles triangle.




















3 replies

IMO 2018 Problem 2
juckter 98
N
41 minutes ago
by ezpotd
Find all integers
for which there exist real numbers
satisfying
,
and
for
.
Proposed by Patrik Bak, Slovakia






Proposed by Patrik Bak, Slovakia
98 replies
Element sum of k others
akasht 19
N
an hour ago
by ezpotd
Source: ISL 2022 A2
Let
be an integer. Find the smallest integer
with the property that there exists a set of
distinct real numbers such that each of its elements can be written as a sum of
other distinct elements of the set.




19 replies
Least swaps to get any labeling of a regular 99-gon
Photaesthesia 9
N
an hour ago
by Blast_S1
Source: 2024 China MO, Day 2, Problem 6
Let
be a regular
-gon. Assign integers between
and
to the vertices of
such that each integer appears exactly once. (If two assignments coincide under rotation, treat them as the same. ) An operation is a swap of the integers assigned to a pair of adjacent vertices of
. Find the smallest integer
such that one can achieve every other assignment from a given one with no more than
operations.
Proposed by Zhenhua Qu








Proposed by Zhenhua Qu
9 replies
Angles in a triangle with integer cotangents
Stear14 0
an hour ago
In a triangle
, the point
is the midpoint of
and
is a point on the side
such that
. The cotangents of the angles
,
, and
are positive integers
.
(a) Show that the cotangent of the angle
is also an integer and equals
.
(b) Show that there are infinitely many possible triples
, some of which consisting of Fibonacci numbers.










(a) Show that the cotangent of the angle


(b) Show that there are infinitely many possible triples

0 replies
R+ FE f(f(xy)+y)=(x+1)f(y)
jasperE3 1
N
2 hours ago
by maromex
Source: p24734470
Find all functions
such that for all positive real numbers
and
:




1 reply

An important lemma of isogonal conjugate points
buratinogigle 6
N
3 hours ago
by buratinogigle
Source: Own
Let
and
be two isogonal conjugate with respect to triangle
. Let
and
be two points lying on the circle
such that
and
are perpendicular and parallel to bisector of
, respectively. Prove that
and
bisect two arcs
containing
and not containing
, respectively, of
.















6 replies

A difficult problem [tangent circles in right triangles]
ThAzN1 48
N
3 hours ago
by Autistic_Turk
Source: IMO ShortList 1998, geometry problem 8; Yugoslav TST 1999
Let
be a triangle such that
and
. The tangent at
to the circumcircle
of triangle
meets the line
at
. Let
be the reflection of
in the line
, let
be the foot of the perpendicular from
to
, and let
be the midpoint of the segment
. Let the line
intersect the circle
again at
.
Prove that the line
is tangent to the circumcircle of triangle
.
comment



















Prove that the line


comment
Edited by Orl.
48 replies
1 viewing
IMO 2008, Question 2
delegat 63
N
3 hours ago
by ezpotd
Source: IMO Shortlist 2008, A2
(a) Prove that
for all real numbers
,
,
, each different from
, and satisfying
.
(b) Prove that equality holds above for infinitely many triples of rational numbers
,
,
, each different from
, and satisfying
.
Author: Walther Janous, Austria
![\[\frac {x^{2}}{\left(x - 1\right)^{2}} + \frac {y^{2}}{\left(y - 1\right)^{2}} + \frac {z^{2}}{\left(z - 1\right)^{2}} \geq 1\]](http://latex.artofproblemsolving.com/f/a/6/fa6c46c12e7e6bf0b04f6f9a910df6c2b452fe6a.png)





(b) Prove that equality holds above for infinitely many triples of rational numbers





Author: Walther Janous, Austria
63 replies
USAMO 2003 Problem 1
MithsApprentice 69
N
4 hours ago
by de-Kirschbaum
Prove that for every positive integer
there exists an
-digit number divisible by
all of whose digits are odd.



69 replies
d(2025^{a_i}-1) divides a_{n+1}
navi_09220114 2
N
4 hours ago
by mickeymouse7133
Source: TASIMO 2025 Day 2 Problem 5
Let
be a strictly increasing sequence of positive integers such that for all positive integers 
Show that for any positive real number
there is a positive integers
such that
for all
.
Note. Here
denotes the number of positive divisors of the positive integer
.


![\[d(2025^{a_n}-1)|a_{n+1}.\]](http://latex.artofproblemsolving.com/8/f/d/8fda531266d39c7f11c58d3c1077d2cab3357bea.png)




Note. Here


2 replies

Nice two degree inequality (1)--from amparvardi
G
H
J
G
H
BBookmark
kLocked
kLocked
NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Y by Adventure10, Mango247
fjwxcsl wrote:

Z
K
Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Y by Adventure10, Mango247
arqady wrote:
fjwxcsl wrote:

Try

Z
K
Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Y by Adventure10, Mango247
fjwxcsl wrote:
arqady wrote:
fjwxcsl wrote:

Try

that inequality holds for

Z
K
Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
N Quick Reply
G
H
=