Construct a Triangle knowing the Lengths of 3 Sides
by Klaus-Anton, Jun 1, 2025, 1:20 PM
You find this in How to construct the point S of this tetrahedron?
![[asy]
// http://asymptote.ualberta.ca/
pair barycentric(pair A=(0,0), pair B=(0,0), real a=1, real b=0){
return (a*A+b*B)/(a+b);}
// Application: construct a triangle knowing the lengths of 3 sides
unitsize(1cm);
real a=6, b=5, c=2.5;
pair B=(0,0), C=(a,0);
pair H=barycentric(B,C,1/(a^2+c^2-b^2),1/(a^2+b^2-c^2));
real bt=abs(H-B);
real h=sqrt(c*c-bt*bt);
pair A=H+h*dir(90);
draw(box(H,H+(.2,.2)),red);
draw(A--H,red);
draw(A--B--C--cycle);
label("$A$",A,plain.N);
label("$B$",B,plain.SW);
label("$C$",C,plain.SE);
label("$H$",H,plain.S);
shipout(bbox(2mm,FillDraw(white,white)));
[/asy]](//latex.artofproblemsolving.com/3/8/a/38a7e8270e0e413abd2b7a2681ba8c648cf3ae75.png)
Note: You can find an incomplete asy as bary.asy of vEnhance / dotfiles.
![[asy]
// http://asymptote.ualberta.ca/
pair barycentric(pair A=(0,0), pair B=(0,0), real a=1, real b=0){
return (a*A+b*B)/(a+b);}
// Application: construct a triangle knowing the lengths of 3 sides
unitsize(1cm);
real a=6, b=5, c=2.5;
pair B=(0,0), C=(a,0);
pair H=barycentric(B,C,1/(a^2+c^2-b^2),1/(a^2+b^2-c^2));
real bt=abs(H-B);
real h=sqrt(c*c-bt*bt);
pair A=H+h*dir(90);
draw(box(H,H+(.2,.2)),red);
draw(A--H,red);
draw(A--B--C--cycle);
label("$A$",A,plain.N);
label("$B$",B,plain.SW);
label("$C$",C,plain.SE);
label("$H$",H,plain.S);
shipout(bbox(2mm,FillDraw(white,white)));
[/asy]](http://latex.artofproblemsolving.com/3/8/a/38a7e8270e0e413abd2b7a2681ba8c648cf3ae75.png)
Note: You can find an incomplete asy as bary.asy of vEnhance / dotfiles.
This post has been edited 3 times. Last edited by Klaus-Anton, Jun 1, 2025, 1:23 PM
A Minipage as Explanation
by Klaus-Anton, Jun 1, 2025, 1:07 PM
Black Mild (2021) wrote:
This post has been edited 1 time. Last edited by Klaus-Anton, Jun 1, 2025, 1:08 PM
Equilateral triangle
by Klaus-Anton, Jun 1, 2025, 12:01 PM
How does a new line change that?
by Klaus-Anton, May 4, 2025, 1:39 PM
It has been asked:
(Pistons Different Image - And here read my reply there).
But Pistons there had not read exactly. Compare:
You see, aidan0626 told him not to add a new line. He told him to remove a new line. Okay. Also there the other way round would either work as well as i think.
In my eyes this is a similar case as i had explained it here:
Klaus-Anton in reply to sirinivi in how to remove y from diagram
Recently to me too happened a similar case, which has made me wondering not little.
In my reply in writing problem asymptote (post #10) appear two line segments of an earlier version i had made in TeXeR. The statement
does not stand there in the code. But in spite of this the two segments are visible. Strange enough. These two segments there are visible. But the code does not say to asy to draw these segments.
Let us see:
![[asy]
//unitsize(3.1cm);
size(8cm);
pair A, B, C, P, P0, Q;
A = (1,0);
B = (0,1);
C = (0,0);
P = extension(C, C + dir(16), A, B);
P0 = (-P.y,P.x);
pair Pprime = (-P.y,P.x);
Q = extension(C, C + dir(16 + 45), A, B);
pair Q61=dir(61);
pair P16_plus_90=dir(16+90);
draw(A--B--C--cycle);
draw(C--P);
draw(C--P0);
draw(P--P0,dashed);
draw(C--Q);
draw(P--dir(16)
^^Q--Q61
^^Pprime--dir(16+90)
^^arc(C,1,0,16+90)
,dotted);
dot(dir(16),UnFill);
dot(dir(16+90),UnFill);
dot(Q61,UnFill);
import geometry;
perpfactor=.8;
perpendicularmark(C, dir(Q),red);
perpendicularmark(C, dir(NE),blue);
label("$A$", A, SE);
label("$B$", B, N);
label("$C$", C, SW);
label("$P$", P, dir(P--Q,C--P)*dir(-15));
label("$P'$", Pprime, dir(C--Pprime)*dir(90));
real
angleQCP=45,
anglePCA=16,
angleBCA=90,
angleP16_plus_90CA=16+90
;
//label(rotate(-90+8,dir(8))*"$16^\circ$",dir(8), dir(8));
label(//rotate(-90+8,dir(8))*
"$y$",dir(8), dir(8));
label(rotate(-90+22.5+16,dir(16+22.5))*"$45^\circ$",dir((16+22.5)), dir((16+45)/2));
label("$Q$", Q, 1.25*dir(C--Q,Q--P)*dir(-3.5));
//label(rotate(8)*"$16^\circ$",arc(C,1,90,90+16));
label(rotate(8)*"$y$",arc(C,1,90,90+16));
//label(rotate(-29/2)*"$29^\circ$",arc(C,1,16+45,90));
label(rotate(-29/2)*"$x$",arc(C,1,16+45,90));
//draw(rotate(-90+(90+16)/2)*"$90^\circ+16^\circ$",arc(C,1.25,0,90+16),Arrow);//autosizes
draw(rotate(-90+(90+16)/2)*"$90^\circ+y$",arc(C,1.25,0,90+16),Arrow);//autosizes
shipout(bbox(2mm,FillDraw(white,white)));
[/asy]](//latex.artofproblemsolving.com/texer/l/loupclie.png)
![[asy]
//unitsize(3.1cm);
size(8cm);
pair A, B, C, P, P0, Q;
A = (1,0);
B = (0,1);
C = (0,0);
P = extension(C, C + dir(16), A, B);
P0 = (-P.y,P.x);
pair Pprime = (-P.y,P.x);
Q = extension(C, C + dir(16 + 45), A, B);
pair Q61=dir(61);
pair P16_plus_90=dir(16+90);
draw(A--B--C--cycle);
draw(C--P);
draw(C--P0);
draw(P--P0,dashed);
draw(C--Q);
draw(P--dir(16)
^^Q--Q61
^^Pprime--dir(16+90)
^^arc(C,1,0,16+90)
,dotted);
dot(dir(16),UnFill);
dot(dir(16+90),UnFill);
dot(Q61,UnFill);
import geometry;
perpfactor=.8;
perpendicularmark(C, dir(Q),red);
perpendicularmark(C, dir(NE),blue);
label("$A$", A, SE);
label("$B$", B, N);
label("$C$", C, SW);
label("$P$", P, dir(P--Q,C--P)*dir(-15));
label("$P'$", Pprime, dir(C--Pprime)*dir(90));
real
angleQCP=45,
anglePCA=16,
angleBCA=90,
angleP16_plus_90CA=16+90
;
//label(rotate(-90+8,dir(8))*"$16^\circ$",dir(8), dir(8));
label(//rotate(-90+8,dir(8))*
"$y$",dir(8), dir(8));
label(rotate(-90+22.5+16,dir(16+22.5))*"$45^\circ$",dir((16+22.5)), dir((16+45)/2));
label("$Q$", Q, 1.25*dir(C--Q,Q--P)*dir(-3.5));
//label(rotate(8)*"$16^\circ$",arc(C,1,90,90+16));
label(rotate(8)*"$y$",arc(C,1,90,90+16));
//label(rotate(-29/2)*"$29^\circ$",arc(C,1,16+45,90));
label(rotate(-29/2)*"$x$",arc(C,1,16+45,90));
//draw(rotate(-90+(90+16)/2)*"$90^\circ+16^\circ$",arc(C,1.25,0,90+16),Arrow);//autosizes
draw(rotate(-90+(90+16)/2)*"$90^\circ+y$",arc(C,1.25,0,90+16),Arrow);//autosizes
shipout(bbox(2mm,FillDraw(white,white)));
[/asy]](//latex.artofproblemsolving.com/6/c/c/6cc0b7f4992e39d8fb9afeab5c564842f94f1dee.png)
And this is even so as it is. - Neither in the code for Fig. 1 or in the code for Fig. 2 you can find the statement
. So it is.
Pistons wrote:
How does a new line change that?
But Pistons there had not read exactly. Compare:
aidan0626 wrote:
probably an issue where the aops servers cached the wrong image
like if you remove a new line, you get this
![[asy]
unitsize(1.5 cm);
pair A, B, C, D, O, T;
O = (0,0);
T = dir(20);
B = extension(T, T + rotate(90)*(T), (0,1), (1,1));
C = extension(T, T + rotate(90)*(T), (0,-1), (1,-1));
A = reflect((0,0),(0,1))*(B);
D = reflect((0,0),(0,1))*(C);
draw(A--B--C--D--cycle);
draw(Circle(O,1));
label("$A$", A, NW);
label("$B$", B, NE);
label("$C$", C, SE);
label("$D$", D, SW);
[/asy]](//latex.artofproblemsolving.com/2/f/5/2f512ce5df5ae6438058ce2a9729aa84dca8518f.png)
like if you remove a new line, you get this
![[asy]
unitsize(1.5 cm);
pair A, B, C, D, O, T;
O = (0,0);
T = dir(20);
B = extension(T, T + rotate(90)*(T), (0,1), (1,1));
C = extension(T, T + rotate(90)*(T), (0,-1), (1,-1));
A = reflect((0,0),(0,1))*(B);
D = reflect((0,0),(0,1))*(C);
draw(A--B--C--D--cycle);
draw(Circle(O,1));
label("$A$", A, NW);
label("$B$", B, NE);
label("$C$", C, SE);
label("$D$", D, SW);
[/asy]](http://latex.artofproblemsolving.com/2/f/5/2f512ce5df5ae6438058ce2a9729aa84dca8518f.png)
You see, aidan0626 told him not to add a new line. He told him to remove a new line. Okay. Also there the other way round would either work as well as i think.
In my eyes this is a similar case as i had explained it here:
Klaus-Anton in reply to sirinivi in how to remove y from diagram
Recently to me too happened a similar case, which has made me wondering not little.
In my reply in writing problem asymptote (post #10) appear two line segments of an earlier version i had made in TeXeR. The statement

Let us see:
![[asy]
//unitsize(3.1cm);
size(8cm);
pair A, B, C, P, P0, Q;
A = (1,0);
B = (0,1);
C = (0,0);
P = extension(C, C + dir(16), A, B);
P0 = (-P.y,P.x);
pair Pprime = (-P.y,P.x);
Q = extension(C, C + dir(16 + 45), A, B);
pair Q61=dir(61);
pair P16_plus_90=dir(16+90);
draw(A--B--C--cycle);
draw(C--P);
draw(C--P0);
draw(P--P0,dashed);
draw(C--Q);
draw(P--dir(16)
^^Q--Q61
^^Pprime--dir(16+90)
^^arc(C,1,0,16+90)
,dotted);
dot(dir(16),UnFill);
dot(dir(16+90),UnFill);
dot(Q61,UnFill);
import geometry;
perpfactor=.8;
perpendicularmark(C, dir(Q),red);
perpendicularmark(C, dir(NE),blue);
label("$A$", A, SE);
label("$B$", B, N);
label("$C$", C, SW);
label("$P$", P, dir(P--Q,C--P)*dir(-15));
label("$P'$", Pprime, dir(C--Pprime)*dir(90));
real
angleQCP=45,
anglePCA=16,
angleBCA=90,
angleP16_plus_90CA=16+90
;
//label(rotate(-90+8,dir(8))*"$16^\circ$",dir(8), dir(8));
label(//rotate(-90+8,dir(8))*
"$y$",dir(8), dir(8));
label(rotate(-90+22.5+16,dir(16+22.5))*"$45^\circ$",dir((16+22.5)), dir((16+45)/2));
label("$Q$", Q, 1.25*dir(C--Q,Q--P)*dir(-3.5));
//label(rotate(8)*"$16^\circ$",arc(C,1,90,90+16));
label(rotate(8)*"$y$",arc(C,1,90,90+16));
//label(rotate(-29/2)*"$29^\circ$",arc(C,1,16+45,90));
label(rotate(-29/2)*"$x$",arc(C,1,16+45,90));
//draw(rotate(-90+(90+16)/2)*"$90^\circ+16^\circ$",arc(C,1.25,0,90+16),Arrow);//autosizes
draw(rotate(-90+(90+16)/2)*"$90^\circ+y$",arc(C,1.25,0,90+16),Arrow);//autosizes
shipout(bbox(2mm,FillDraw(white,white)));
[/asy]](http://latex.artofproblemsolving.com/texer/l/loupclie.png)
Fig. 1: segments of
visible

![[asy]
//unitsize(3.1cm);
size(8cm);
pair A, B, C, P, P0, Q;
A = (1,0);
B = (0,1);
C = (0,0);
P = extension(C, C + dir(16), A, B);
P0 = (-P.y,P.x);
pair Pprime = (-P.y,P.x);
Q = extension(C, C + dir(16 + 45), A, B);
pair Q61=dir(61);
pair P16_plus_90=dir(16+90);
draw(A--B--C--cycle);
draw(C--P);
draw(C--P0);
draw(P--P0,dashed);
draw(C--Q);
draw(P--dir(16)
^^Q--Q61
^^Pprime--dir(16+90)
^^arc(C,1,0,16+90)
,dotted);
dot(dir(16),UnFill);
dot(dir(16+90),UnFill);
dot(Q61,UnFill);
import geometry;
perpfactor=.8;
perpendicularmark(C, dir(Q),red);
perpendicularmark(C, dir(NE),blue);
label("$A$", A, SE);
label("$B$", B, N);
label("$C$", C, SW);
label("$P$", P, dir(P--Q,C--P)*dir(-15));
label("$P'$", Pprime, dir(C--Pprime)*dir(90));
real
angleQCP=45,
anglePCA=16,
angleBCA=90,
angleP16_plus_90CA=16+90
;
//label(rotate(-90+8,dir(8))*"$16^\circ$",dir(8), dir(8));
label(//rotate(-90+8,dir(8))*
"$y$",dir(8), dir(8));
label(rotate(-90+22.5+16,dir(16+22.5))*"$45^\circ$",dir((16+22.5)), dir((16+45)/2));
label("$Q$", Q, 1.25*dir(C--Q,Q--P)*dir(-3.5));
//label(rotate(8)*"$16^\circ$",arc(C,1,90,90+16));
label(rotate(8)*"$y$",arc(C,1,90,90+16));
//label(rotate(-29/2)*"$29^\circ$",arc(C,1,16+45,90));
label(rotate(-29/2)*"$x$",arc(C,1,16+45,90));
//draw(rotate(-90+(90+16)/2)*"$90^\circ+16^\circ$",arc(C,1.25,0,90+16),Arrow);//autosizes
draw(rotate(-90+(90+16)/2)*"$90^\circ+y$",arc(C,1.25,0,90+16),Arrow);//autosizes
shipout(bbox(2mm,FillDraw(white,white)));
[/asy]](http://latex.artofproblemsolving.com/6/c/c/6cc0b7f4992e39d8fb9afeab5c564842f94f1dee.png)
Fig. 2: segments of
un-visible

And this is even so as it is. - Neither in the code for Fig. 1 or in the code for Fig. 2 you can find the statement

This post has been edited 5 times. Last edited by Klaus-Anton, May 5, 2025, 8:42 AM
iced tea
by Klaus-Anton, Apr 25, 2025, 12:50 PM
Did you see my reply on having a "rainbow" color?
You could add there StackExchange Rainbow text on a surface in Asymptote, and - as a nice modification - for example this too:
![[asy]
// modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath("iced tea"),p);
shipout(defaultfilename,bbox(2mm,RadialShade(mediumred+white,red)));
[/asy]](//latex.artofproblemsolving.com/a/d/f/adfd8f5ea65b13821817e5153a2fed8ab3f4945b.png)
![[asy]
// modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath("Klaus"),p);
shipout(bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(Landscape);
[/asy]](//latex.artofproblemsolving.com/2/6/5/265f5738874785ec19db6a85b8d26e944e22c635.png)
![[asy]
//modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath(yscale(2)*"BlackShark28"),p);
shipout(rotate(-6)*bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(rotate(0)*bbox(2mm,FillDraw(red,red)));
[/asy]](//latex.artofproblemsolving.com/f/8/2/f82152b044cdc1a77144a9e761009cb5cbbd45c0.png)
![[asy]
//modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath(scale(3)*(rotate(15))*"\textbf{\textit{Ela Pan}}"),p);
shipout(rotate(-6)*bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(rotate(0)*bbox(2mm,FillDraw(red,red)));
[/asy]](//latex.artofproblemsolving.com/1/4/0/14046435e67f0e151a3abb270b364a97de196263.png)
![[asy]
//modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
//defaultpen(fontsize(10pt)+TimesRoman());
pen[][] p={{white,grey,black},
//{red,green,blue},
{orange,green,white},
{cyan,magenta,yellow}};
latticeshade(texpath(scale(3)*(rotate(15))*"\textbf{\textit{Larysa Dbg}}"),p);
shipout(rotate(6)*bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(rotate(-30)*bbox(2mm,FillDraw(red,red)));
shipout(rotate(90)*bbox(0mm,FillDraw(red,red)));
[/asy]](//latex.artofproblemsolving.com/3/3/d/33d8aded7fcd1f1e777825745963365960fe4425.png)
You could add there StackExchange Rainbow text on a surface in Asymptote, and - as a nice modification - for example this too:
![[asy]
// modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath("iced tea"),p);
shipout(defaultfilename,bbox(2mm,RadialShade(mediumred+white,red)));
[/asy]](http://latex.artofproblemsolving.com/a/d/f/adfd8f5ea65b13821817e5153a2fed8ab3f4945b.png)
![[asy]
// modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath("Klaus"),p);
shipout(bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(Landscape);
[/asy]](http://latex.artofproblemsolving.com/2/6/5/265f5738874785ec19db6a85b8d26e944e22c635.png)
![[asy]
//modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath(yscale(2)*"BlackShark28"),p);
shipout(rotate(-6)*bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(rotate(0)*bbox(2mm,FillDraw(red,red)));
[/asy]](http://latex.artofproblemsolving.com/f/8/2/f82152b044cdc1a77144a9e761009cb5cbbd45c0.png)
![[asy]
//modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
pen[][] p={{white,grey,black},
{red,green,blue},
{cyan,magenta,yellow}};
latticeshade(texpath(scale(3)*(rotate(15))*"\textbf{\textit{Ela Pan}}"),p);
shipout(rotate(-6)*bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(rotate(0)*bbox(2mm,FillDraw(red,red)));
[/asy]](http://latex.artofproblemsolving.com/1/4/0/14046435e67f0e151a3abb270b364a97de196263.png)
![[asy]
//modified from https://tex.stackexchange.com/questions/430142/rainbow-text-on-a-surface-in-asymptote
size(5cm);
//defaultpen(fontsize(10pt)+TimesRoman());
pen[][] p={{white,grey,black},
//{red,green,blue},
{orange,green,white},
{cyan,magenta,yellow}};
latticeshade(texpath(scale(3)*(rotate(15))*"\textbf{\textit{Larysa Dbg}}"),p);
shipout(rotate(6)*bbox(2mm,RadialShade(mediumred+white,red)) );
shipout(rotate(-30)*bbox(2mm,FillDraw(red,red)));
shipout(rotate(90)*bbox(0mm,FillDraw(red,red)));
[/asy]](http://latex.artofproblemsolving.com/3/3/d/33d8aded7fcd1f1e777825745963365960fe4425.png)
This post has been edited 6 times. Last edited by Klaus-Anton, Jul 5, 2025, 3:47 PM
Birthday asymptote
by Klaus-Anton, Mar 25, 2025, 4:20 PM
I answerd to RoyalPrince Birthday asymptote (and RoyalPrince he directly prompted with "Thank you!"):
![[asy]
/*
http://asymptote.ualberta.ca/
click pdf
click download
open with Adobe Acrobat Reader
ctr-h and after that ctr-l ===> fullscreen
*/
usepackage("calligra");
tex("\DeclareFontFamily{T1}{calligra}{}");
tex("\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[1.55]callig15}{}");
settings.render=4;
unitsize(1.75cm);
real gr=(sqrt(5)-1)/2;
pair A=(.5,0), B=(1.5,0);
real ra=1+(2*.0675),
rb=1.125;
radialshade(//currentpicture
box((-1.125,-1.375),(3.0,1.5))//,stroke=false //default
,blue+white, A, ra, extenda=false// true is default
,red+white,B,rb,extendb=false);// true is default
label(scale(.9)*slant(-gr^.5)*"\huge{\textcalligra{Happy Birtday, Sister!}}",(0,0),yellow+white+.5orange);
shipout(defaultfilename,bbox(.5mm,RadialShade(paleblue,red)));
[/asy]](//latex.artofproblemsolving.com/texer/k/klhofzln.png)
This is a small modification from Figure 6 in my contribution radialshade
![[asy]
/*
http://asymptote.ualberta.ca/
click pdf
click download
open with Adobe Acrobat Reader
ctr-h and after that ctr-l ===> fullscreen
*/
usepackage("calligra");
tex("\DeclareFontFamily{T1}{calligra}{}");
tex("\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[1.55]callig15}{}");
settings.render=4;
unitsize(1.75cm);
real gr=(sqrt(5)-1)/2;
pair A=(.5,0), B=(1.5,0);
real ra=1+(2*.0675),
rb=1.125;
radialshade(//currentpicture
box((-1.125,-1.375),(3.0,1.5))//,stroke=false //default
,blue+white, A, ra, extenda=false// true is default
,red+white,B,rb,extendb=false);// true is default
label(scale(.9)*slant(-gr^.5)*"\huge{\textcalligra{Happy Birtday, Sister!}}",(0,0),yellow+white+.5orange);
shipout(defaultfilename,bbox(.5mm,RadialShade(paleblue,red)));
[/asy]](http://latex.artofproblemsolving.com/texer/k/klhofzln.png)
This is a small modification from Figure 6 in my contribution radialshade
This post has been edited 2 times. Last edited by Klaus-Anton, Mar 25, 2025, 4:34 PM
Isosceles Trapezoid with Incircle
by Klaus-Anton, Mar 25, 2025, 3:58 PM
This post has been edited 2 times. Last edited by Klaus-Anton, Mar 25, 2025, 4:28 PM
How do i get a fontsize larger than 25pt in asy?
by Klaus-Anton, Mar 11, 2025, 9:31 AM
In LABELS - Effets de texte of gmarris in ASYMPTOTE un puissant langage de graphisme vectoriel Galeries de 724 exemples, par thèmes, de figures réalisées avec Asymptote there you find an example which demonstrates that asy here does not really hear on the programming code. It ought draw too in a fontsize bigger than 25 pt, but does not do so.
You remember.
. This is a well known limit in
. But there are ways to make oversteps over this limit.
Okay.
![[asy]
unitsize(1cm);
import math;
///////////////////////////////////////////////////////////////////
import fontsize; // <<<<<<<<< pour obtenir des tailles plus grandes
///////////////////////////////////////////////////////////////////
defaultpen(fontsize(10pt));
label("$10$",(0,0),blue);
label("$15$",(1,0),fontsize(15pt)+red);
label("$20$",(2,0),fontsize(20pt)+green);
label("$25$",(3,0),fontsize(25pt)+blue);
label("$30$",(4,0),fontsize(30pt)+red);
label("$35$",(5,0),fontsize(35pt)+green);
label("$40$",(6,0),fontsize(40pt)+blue);
label("$45$",(7,0),fontsize(45pt)+red);
label("Comprendre la taille des \'etiquettes (labels).",(0,1),E);
label("Comparer avec l'exemple pr\'ec\'edent !",(7.5,-1),W);
shipout(bbox(2mm, FillDraw(white,white)));
[/asy]](//latex.artofproblemsolving.com/a/4/5/a451d45e44e51f167c4bb7ec55476e1f7a955d5e.png)
Figure 0008 realizes it that it can draw the fonts bigger than in 25 pt by the additional line in the asy programming code: import fontsize;
You remember.


Okay.
![[asy]
unitsize(1cm);
import math;
defaultpen(fontsize(10pt));
label("$10$",(0,0),blue);
label("$15$",(1,0),fontsize(15pt)+red);
label("$20$",(2,0),fontsize(20pt)+green);
label("$25$",(3,0),fontsize(25pt)+blue);
label("$30$",(4,0),fontsize(30pt)+red);
label("$35$",(5,0),fontsize(35pt)+green);
label("$40$",(6,0),fontsize(40pt)+blue);
label("$45$",(7,0),fontsize(45pt)+red);
label("Comprendre la taille des \'etiquettes (labels).",(0,1),E);
label("Comparer avec l'exemple suivant !",(7.5,-1),W);
shipout(bbox(2mm, FillDraw(white,white)));
[/asy]](http://latex.artofproblemsolving.com/e/d/a/edad7ed62259d267829fa6f2b10240f9c1e11f7e.png)
![[asy]
unitsize(1cm);
import math;
///////////////////////////////////////////////////////////////////
import fontsize; // <<<<<<<<< pour obtenir des tailles plus grandes
///////////////////////////////////////////////////////////////////
defaultpen(fontsize(10pt));
label("$10$",(0,0),blue);
label("$15$",(1,0),fontsize(15pt)+red);
label("$20$",(2,0),fontsize(20pt)+green);
label("$25$",(3,0),fontsize(25pt)+blue);
label("$30$",(4,0),fontsize(30pt)+red);
label("$35$",(5,0),fontsize(35pt)+green);
label("$40$",(6,0),fontsize(40pt)+blue);
label("$45$",(7,0),fontsize(45pt)+red);
label("Comprendre la taille des \'etiquettes (labels).",(0,1),E);
label("Comparer avec l'exemple pr\'ec\'edent !",(7.5,-1),W);
shipout(bbox(2mm, FillDraw(white,white)));
[/asy]](http://latex.artofproblemsolving.com/a/4/5/a451d45e44e51f167c4bb7ec55476e1f7a955d5e.png)
Figure 0008 realizes it that it can draw the fonts bigger than in 25 pt by the additional line in the asy programming code: import fontsize;
Beitrag zur Diskussion der Orientierung der Rose im Wappen von NRW (BRD)
by Klaus-Anton, Mar 7, 2025, 9:18 AM
Guck dir das doch mal an in dem Artikel: wiki Wappen_Nordrhein-Westfalens.
In den dortigen Quellen findet sich GiW1996_1/GiW_1996_1_NAGEL_LANDESWAPPEN.pdf. Auf Seite 39 f. schreibt Nagel: „Man hat verschiedentlich davon gesprochen, daß die lippische Rose im Landeswappen auf dem Kopfe stehe. Ich gestehe, daß ich mir schwer vorstellen kann, wie eine Rosenblüte auf dem Kopf stehen soll.“
Der wiki-Artikel schreibt:
Und dann heißt es in der Bild-Unterschrift zum Staatswappen Lippes: Die „korrekt“ orientierte Lippische Rose im Staatswappen Lippes.
Warum obig zitierter Nagel seine Einsichtsschrwierigkeit genau hat, ist nicht richtig zu verstehen.
In wiki - Drudenfuß (Heraldik) wird das Gemeinte des Auf-dem-Kopf-Stehens deutlicher, da heißt es z.B.: „Der Begriff Drudenfuß wird in der Heraldik für alle Pentagramme verwendet, egal ob die Figur mit der Spitze nach oben oder unten zeigt.“
Ein Bannzeichen des Bösen? In Werner Robl Das Pentagramm in Barock und Klassizismus heißt es zu Goethe:
Sieht man sich das Bild (goethe.jpg) an, so scheint eine Ausrichtung bezüglich der Wege und zum Haus hin mit angedacht gewesen zu sein.
Und übrigens. - Hast du das gesehen: Klaus-Anton's blog 2025 The so called Number of the beast: chi, xi, stigma (666)?
Ach! - Und übrigens auch. Schneide doch mal einen Apfel horzontal durch. Was erscheint dir?
Das mit dem Apfel, das verwundert eigentlich nicht sehr. Die Büte ist im Grundaufbau fünfzählig. Fünf Blütenblätter und fünf Kelchblätter. Hm. Aber. Na ja. Ja, ja. - Ja, doch. Genau. So wie die Rose selbst gehört ja auch der Apfel botanisch gesehen (eben so wie die Birne und viele andere nehr) zu den Rosacaen, den Rosengewächsen. Aha. Ach so! - Ja, ja. So ist das.
In den dortigen Quellen findet sich GiW1996_1/GiW_1996_1_NAGEL_LANDESWAPPEN.pdf. Auf Seite 39 f. schreibt Nagel: „Man hat verschiedentlich davon gesprochen, daß die lippische Rose im Landeswappen auf dem Kopfe stehe. Ich gestehe, daß ich mir schwer vorstellen kann, wie eine Rosenblüte auf dem Kopf stehen soll.“
Der wiki-Artikel schreibt:
Quote:
„Das untere silberne Feld mit der eingebogenen Spitze stellt die Lippische Rose dar, das dynastische Symbol des Hauses Lippe, das bereits in einem Siegel Hermanns II. von Lippe aus dem Jahre 1218 nachgewiesen ist.[8] Im Landeswappen steht die Rose für das Land Lippe, das nach dem Zweiten Weltkrieg seine Selbstständigkeit als Freistaat aufgeben musste und am 21. Januar 1947 in das Land Nordrhein-Westfalen eingegliedert wurde. Im Staatswappen von Lippe wie auch in den meisten kommunalen Wappen von Lippe zeigt eines der fünf goldenen Kelchblätter gerade nach unten. Gegenüber diesen Darstellungen wurde die lippische Rose im nordrhein-westfälischen Landeswappen um 36 Grad gedreht, so dass eines der goldenen Kelchblätter gerade nach oben zeigt.“
Und dann heißt es in der Bild-Unterschrift zum Staatswappen Lippes: Die „korrekt“ orientierte Lippische Rose im Staatswappen Lippes.
Warum obig zitierter Nagel seine Einsichtsschrwierigkeit genau hat, ist nicht richtig zu verstehen.
In wiki - Drudenfuß (Heraldik) wird das Gemeinte des Auf-dem-Kopf-Stehens deutlicher, da heißt es z.B.: „Der Begriff Drudenfuß wird in der Heraldik für alle Pentagramme verwendet, egal ob die Figur mit der Spitze nach oben oder unten zeigt.“
Ein Bannzeichen des Bösen? In Werner Robl Das Pentagramm in Barock und Klassizismus heißt es zu Goethe:
Quote:
„Im Sommer 1830 entstand davor ein Bodenmosaik aus großen Kalk- und Kieselsteinen, das als Bannzeichen des Bösen ein Pentagramm mit Um- und Inkreis darstellte. Trotz der in Faust 1 berichteten Fragilität hatte es für Goethe und seine Gäste noch jenen Schutz und jene Sicherheit zu symbolisieren, den es über Jahrtausende, von der Vor- bis zur Neuzeit, repräsentiert hatte.“
Sieht man sich das Bild (goethe.jpg) an, so scheint eine Ausrichtung bezüglich der Wege und zum Haus hin mit angedacht gewesen zu sein.
Und übrigens. - Hast du das gesehen: Klaus-Anton's blog 2025 The so called Number of the beast: chi, xi, stigma (666)?
Ach! - Und übrigens auch. Schneide doch mal einen Apfel horzontal durch. Was erscheint dir?
Mario Livio 2002. The Golden Ratio. The Story of Phi , the World's Most Astonishing Number. Broadway Books. New York. wrote:
Take, for example, an ordinary apple, the fruit often associated (probably mistakenly) with the tree of knowledge that figures so prominently in the biblical account of humankind’s fall from grace, and cut it through its girth. You will find that the apple’s seeds are arranged in a five-pointed star pattern, or pentagram (Figure 3). Each of the five isosceles triangles that make the corners of a entagram has the property that the ratio of the length of its longer side to the shorter one (the implied base) is equal to the Golden Ratio, 1.618…. But, you may think, maybe this is not so surprising. After all, since the Golden Ratio has been defined as a geometrical proportion, perhaps we should not be too astonished to discover that this proportion is found in some geometrical shapes.
(Page 17)
(Page 17)
Das mit dem Apfel, das verwundert eigentlich nicht sehr. Die Büte ist im Grundaufbau fünfzählig. Fünf Blütenblätter und fünf Kelchblätter. Hm. Aber. Na ja. Ja, ja. - Ja, doch. Genau. So wie die Rose selbst gehört ja auch der Apfel botanisch gesehen (eben so wie die Birne und viele andere nehr) zu den Rosacaen, den Rosengewächsen. Aha. Ach so! - Ja, ja. So ist das.
This post has been edited 3 times. Last edited by Klaus-Anton, Mar 9, 2025, 10:44 AM
Archives






























































































Shouts
Submit
38 shouts
Tags
About Owner
- Posts: 740
- Joined: Sep 24, 2010
Blog Stats
- Blog created: Nov 3, 2010
- Total entries: 773
- Total visits: 99375
- Total comments: 73
Search Blog