Labelling the Centerpoint of an Arc with a greek Letter
by Klaus-Anton, Mar 31, 2023, 10:32 AM
wloy2022 asks for Diagram Help.
For me it is not really clear what he there calls
. Please excuse me.
But putting a label (as a greek letter) to the centerpoint of an arc there normally you use some kind of bisector functions.
Look here what i ansered there:
Now in my next figure there you can see how i try to understand some of the underlying basic ideas of the diagram of wloy2022. Am i right so far?
What do we see? What can we make out?
There are two isosceles triangles, what we colorize: 1.)
and 2.)
. We also have already added their besectors from
together with the perpendicular marks.
And more? Look depper! Ah!!! I see. There is a third one: 3.)
. Let us colorize it in green.
Now finally i recall you Klaus-Anton 2023. Trigonometric Identities in the Circle of Thales (which builds on a post of Phu Nguyen). And you say to me: "Fine! - I remember".
For me it is not really clear what he there calls

But putting a label (as a greek letter) to the centerpoint of an arc there normally you use some kind of bisector functions.
Look here what i ansered there:
![[asy]
pair A = (5, 12);
pair B = (0, 0);
pair C = (5 + 2035/69, 0);
pair D = (10, 0);
pair myE = (5/2 + 2035/138, -400/23);
draw(A--B--C--cycle);
draw(A--D);
draw(B--myE--C);
draw(D--myE);
draw(anglemark(B, A, D, 75),red);
draw(anglemark(D, A, C, 75));
draw(anglemark(myE, B, D, 75));
label("$A$", A, N,red);
label("$B$", B, W,blue);
label("$C$", C, E);
label("$D$", D, NE);
label("$E$", myE, S);
label("\boldmath$\alpha$",A,3*dir(A--B,A--myE),red);
/* asymptote.pdf, page 33 wrote:
pair dir(path p, path q)
returns unit(dir(p)+dir(q)).
*/
label("\boldmath$\gamma$",C,7*dir(C--bisectorpoint(A,C,B))*dir(1)); //bisectorpoint of olympiad.asy
//*dir(1) here is thought by me as "optical correction". (It rotates the label by 1 degree.)
shipout(bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/3/9/7/397dc9e22296a50d00a413383312527d462e6c6a.png)
Figure 1
label("\boldmath$\alpha$",A,3*dir(A--B,A--myE),red); /* asymptote.pdf, page 33 wrote: pair dir(path p, path q) returns unit(dir(p)+dir(q)). */ label("\boldmath$\gamma$",C,7*dir(C--bisectorpoint(A,C,B))*dir(1)); //bisectorpoint of olympiad.asy //*dir(1) here is thought by me as "optical correction". (It rotates the label by 1 degree.)
Code: Excerpt with comments
Now in my next figure there you can see how i try to understand some of the underlying basic ideas of the diagram of wloy2022. Am i right so far?
![[asy]
import graph;
import geometry;
real degreesz1z2(pair z1, pair z2)
{return degrees(dir(z1 -- z2));}
size(8cm);
unitsize(.23cm);
pair A = (5, 12);
pair B = (0, 0);
pair C = (5 + 2035/69, 0);
pair D = (10, 0);
pair myE = (5/2 + 2035/138, -400/23);
pair mpBC=midpoint(B--C);
pair O=midpoint(B--C);
pair Afoot1=(A.x,0);
pair Afoot2=foot(A,C,myE);
draw(A--B--C--cycle);
draw(A--D);
draw(B--myE--C);
draw(D--myE);
draw(anglemark(B, A, D, 75));
draw(anglemark(D, A, C, 75));
draw(anglemark(myE, B, D, 75));
real degreesBA=degreesz1z2(B,A);
real degreesBE=degreesz1z2(B,myE);
real degreesCE=degreesz1z2(C,myE);
real degreesEC=degreesz1z2(myE,C);
real degreesEA=degreesz1z2(myE,A);
real degreesOA=degreesz1z2(O,A);
real theta=degreesz1z2(O,A);
draw(arc(mpBC,2.8,0,degreesz1z2(mpBC,A)),blue);
draw(arc(B,3.8,0,degreesBA),blue);
//draw(arc(myE,3.8, degreesEC,degreesEA),blue);
draw(arc(myE,5.8, 45,45+theta/2),blue);
label("$\theta$",mpBC,dir(.5*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",B,dir(.2*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",myE,4.5*dir(myE--C,myE--A),blue);
//draw(circle(A,arclength(A--B)));//AB=AD?
//draw(circle(A,arclength(A--C)));// AC=AE?
//draw(arc(myE,5,degreesEC,degreesEC+90));
draw(A--(A.x,0),red);
draw(A--mpBC,red);
draw(O--Afoot2,red+Dotted);
draw(circumcircle(A,B,C),red);
//label("$A$", A, N);
label("$A$", A, dir(mpBC--A));
label("$B$", B, W);
label("$C$", C, E);
label("$D$", D, NE);
label("$E$", myE, S);
label("$O$",O,dir(O--B,A--O),red);
//label("$\alpha$", D, dir(D--B,D--myE));//???
dot(mpBC,red,Fill(white));
perpfactor=.8;
//perpendicularmark(myE,dir(myE--B,myE--C),blue);
perpendicularmark(myE,N,blue);
perpendicularmark(Afoot1,NE,blue);
perpendicularmark(Afoot2,dir(degreesEC+45),blue);
perpendicularmark(A,dir(A--B,A--C),blue);
shipout(bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/5/3/1/531cc0a277fcc8ac9517c134b2152804b9da5dd7.png)
Figure 2
What do we see? What can we make out?
There are two isosceles triangles, what we colorize: 1.)



![[asy]
import graph;
import geometry;
real degreesz1z2(pair z1, pair z2)
{return degrees(dir(z1 -- z2));}
size(8cm);
unitsize(.23cm);
pair A = (5, 12);
pair B = (0, 0);
pair C = (5 + 2035/69, 0);
pair D = (10, 0);
pair myE = (5/2 + 2035/138, -400/23);
pair mpBC=midpoint(B--C);
pair O=midpoint(B--C);
pair Afoot1=(A.x,0);
pair Afoot2=foot(A,C,myE);
real degreesBA=degreesz1z2(B,A);
real degreesBE=degreesz1z2(B,myE);
real degreesCE=degreesz1z2(C,myE);
real degreesEC=degreesz1z2(myE,C);
real degreesEA=degreesz1z2(myE,A);
real degreesOA=degreesz1z2(O,A);
real theta=degreesz1z2(O,A);
fill(A--myE--C--cycle, red+white);
//fill(A--B--O--cycle,lightgreen);
fill(A--B--D--cycle,mediumred+white);
draw(arc(mpBC,2.8,0,degreesz1z2(mpBC,A)),blue);
draw(arc(B,3.8,0,degreesBA),blue);
//draw(arc(myE,3.8, degreesEC,degreesEA),blue);
draw(arc(myE,5.8, 45,45+theta/2),blue);
label("$\theta$",mpBC,dir(.5*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",B,dir(.2*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",myE,4.5*dir(myE--C,myE--A),blue);
//draw(circle(A,arclength(A--B)));//AB=AD?
//draw(circle(A,arclength(A--C)));// AC=AE?
//draw(arc(myE,5,degreesEC,degreesEC+90));
draw(A--(A.x,0),red);
draw(A--mpBC,red);
draw(O--Afoot2,red+Dotted);
draw(circumcircle(A,B,C),red);
//label("$A$", A, N);
label("$A$", A, dir(mpBC--A));
label("$B$", B, W);
label("$C$", C, E);
label("$D$", D, NE);
label("$E$", myE, S);
label("$O$",O,dir(O--B,A--O),red);
//label("$\alpha$", D, dir(D--B,D--myE));//???
perpfactor=.8;
//perpendicularmark(myE,dir(myE--B,myE--C),blue);
perpendicularmark(myE,N,blue);
perpendicularmark(Afoot1,NE,blue);
perpendicularmark(Afoot2,dir(degreesEC+45),blue);
perpendicularmark(A,dir(A--B,A--C),blue);
draw(A--B--C--cycle);
draw(A--D);
draw(B--myE--C);
draw(D--myE);
draw(anglemark(B, A, D, 75));
draw(anglemark(D, A, C, 75));
draw(anglemark(myE, B, D, 75));
dot(A^^B^^C^^D^^myE^^O,red,Fill(white));
shipout(bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/2/d/9/2d92ec2fe26dcd8aec4185399695511b9c111ccd.png)
Figure 3: Two red Isosceles Triangles
And more? Look depper! Ah!!! I see. There is a third one: 3.)

![[asy]
import graph;
import geometry;
real degreesz1z2(pair z1, pair z2)
{return degrees(dir(z1 -- z2));}
size(8cm);
unitsize(.23cm);
pair A = (5, 12);
pair B = (0, 0);
pair C = (5 + 2035/69, 0);
pair D = (10, 0);
pair myE = (5/2 + 2035/138, -400/23);
pair mpBC=midpoint(B--C);
pair O=midpoint(B--C);
pair Afoot1=(A.x,0);
pair Afoot2=foot(A,C,myE);
pair OfootAB=foot(O,A,B);
real degreesBA=degreesz1z2(B,A);
real degreesBE=degreesz1z2(B,myE);
real degreesCE=degreesz1z2(C,myE);
real degreesEC=degreesz1z2(myE,C);
real degreesEA=degreesz1z2(myE,A);
real degreesOA=degreesz1z2(O,A);
real theta=degreesz1z2(O,A);
//fill(A--myE--C--cycle, red+white);
fill(A--B--O--cycle,lightgreen);
draw(O--OfootAB,red);
//fill(A--B--D--cycle,mediumred+white);
draw(arc(mpBC,2.8,0,degreesz1z2(mpBC,A)),blue);
draw(arc(B,3.8,0,degreesBA),blue);
//draw(arc(myE,3.8, degreesEC,degreesEA),blue);
draw(arc(myE,5.8, 45,45+theta/2),blue);
label("$\theta$",mpBC,dir(.5*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",B,dir(.2*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",myE,4.5*dir(myE--C,myE--A),blue);
//draw(circle(A,arclength(A--B)));//AB=AD?
//draw(circle(A,arclength(A--C)));// AC=AE?
//draw(arc(myE,5,degreesEC,degreesEC+90));
draw(A--(A.x,0),red);
draw(A--mpBC,red);
draw(O--Afoot2,red+Dotted);
draw(circumcircle(A,B,C),red);
//label("$A$", A, N);
label("$A$", A, dir(mpBC--A));
label("$B$", B, W);
label("$C$", C, E);
label("$D$", D, NE);
label("$E$", myE, S);
label("$O$",O,dir(O--B,A--O),red);
//label("$\alpha$", D, dir(D--B,D--myE));//???
perpfactor=.8;
//perpendicularmark(myE,dir(myE--B,myE--C),blue);
perpendicularmark(myE,N,blue);
perpendicularmark(Afoot1,NE,blue);
perpendicularmark(Afoot2,dir(degreesEC+45),blue);
perpendicularmark(A,dir(A--B,A--C),blue);
perpendicularmark(OfootAB,dir(degreesBA-45),blue);
draw(A--B--C--cycle);
draw(A--D);
draw(B--myE--C);
draw(D--myE);
draw(anglemark(B, A, D, 75));
draw(anglemark(D, A, C, 75));
draw(anglemark(myE, B, D, 75));
dot(A^^B^^C^^D^^myE^^O,red,Fill(white));
shipout(bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/c/a/5/ca5a9b006a34ea40e46a7d72fa5cf1ba1e23f48b.png)
Figure 4: Green Isosceles Triangle
rrrrrrrrrr
with Base
rrrrrrrrrr


![[asy]
import graph;
import geometry;
real degreesz1z2(pair z1, pair z2)
{return degrees(dir(z1 -- z2));}
size(8cm);
unitsize(.23cm);
pair A = (5, 12);
pair B = (0, 0);
pair C = (5 + 2035/69, 0);
pair D = (10, 0);
pair myE = (5/2 + 2035/138, -400/23);
pair mpBC=midpoint(B--C);
pair O=midpoint(B--C);
pair Afoot1=(A.x,0);
pair Afoot2=foot(A,C,myE);
pair OfootAB=foot(O,A,B);
pair CfootDE=foot(C,D,myE);
real degreesBA=degreesz1z2(B,A);
real degreesBE=degreesz1z2(B,myE);
real degreesCE=degreesz1z2(C,myE);
real degreesEC=degreesz1z2(myE,C);
real degreesEA=degreesz1z2(myE,A);
real degreesOA=degreesz1z2(O,A);
real theta=degreesz1z2(O,A);
//fill(A--myE--C--cycle, red+white);
fill(A--B--O--cycle,lightgreen);
draw(O--OfootAB,red);
//fill(A--B--D--cycle,mediumred+white);
fill(C--D--myE--cycle, mediumgreen);
draw(C--CfootDE,red);
draw(arc(mpBC,2.8,0,degreesz1z2(mpBC,A)),blue);
draw(arc(B,3.8,0,degreesBA),blue);
//draw(arc(myE,3.8, degreesEC,degreesEA),blue);
draw(arc(myE,5.8, 45,45+theta/2),blue);
label("$\theta$",mpBC,dir(.5*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",B,dir(.2*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",myE,4.5*dir(myE--C,myE--A),blue);
//draw(circle(A,arclength(A--B)));//AB=AD?
//draw(circle(A,arclength(A--C)));// AC=AE?
//draw(arc(myE,5,degreesEC,degreesEC+90));
draw(A--(A.x,0),red);
draw(A--mpBC,red);
draw(O--Afoot2,red+Dotted);
draw(circumcircle(A,B,C),red);
//label("$A$", A, N);
label("$A$", A, dir(mpBC--A));
label("$B$", B, W);
label("$C$", C, E);
label("$D$", D, NE);
label("$E$", myE, S);
label("$O$",O,dir(O--B,A--O),red);
//label("$\alpha$", D, dir(D--B,D--myE));//???
perpfactor=.8;
//perpendicularmark(myE,dir(myE--B,myE--C),blue);
perpendicularmark(myE,N,blue);
perpendicularmark(Afoot1,NE,blue);
perpendicularmark(Afoot2,dir(degreesEC+45),blue);
perpendicularmark(A,dir(A--B,A--C),blue);
perpendicularmark(OfootAB,dir(degreesBA-45),blue);
perpendicularmark(CfootDE,dir(degreesEA-45),blue);
draw(A--B--C--cycle);
draw(A--D);
draw(B--myE--C);
draw(D--myE);
draw(anglemark(B, A, D, 75));
draw(anglemark(D, A, C, 75));
draw(anglemark(myE, B, D, 75));
//draw(arc(C,arclength(C--D),180,360-45-90));
dot(A^^B^^C^^D^^myE^^O,red,Fill(white));
shipout(bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/8/a/f/8af8154a4c188c516dcae436d674ecf0fc3453f5.png)
Figure 5: A further green Isosceles Triangle
with Base


Now finally i recall you Klaus-Anton 2023. Trigonometric Identities in the Circle of Thales (which builds on a post of Phu Nguyen). And you say to me: "Fine! - I remember".
![[asy]
import graph;
import geometry;
import markers;
usepackage("amsmath");
//usepackage("mtpro2");
//settings.outformat="pdf"; // output is pdf
size(7.4cm, keepAspect=true);
defaultpen(fontsize(12pt));
void plot_label(picture pic, pair A, pair B, string s, real l)
{
pair AB=B-A;
AB=AB/length(AB);
real alpha=degrees(acos(AB.x));
if ( AB.y < 0 ) alpha = -alpha;
pair normal=(-AB.y,AB.x);
label(pic,rotate(alpha)*s,.5(A+B)+l*normal,blue);
}
picture pic1, pic2, pic3;
// pic 2
real alpha=20;
real r = 1;
pair O=(0,0);
real alpha1=20;
real alpha2=20+90;
real alpha3=180+45;
real alpha4=180+75;
draw(pic3,unitcircle,red+1.2pt);
// pic1
real alpha1=0;
real alpha2=180;
real alpha3=90+20;
real alpha4=180+85;
draw(pic1,unitcircle,red+1.2pt);
pair A=dir(alpha2);
pair C=dir(alpha1);
pair B=dir(alpha3);
pair D=dir(alpha4);
draw(pic1,O--A,black+.8pt);
draw(pic1,O--C,black+.8pt);
draw(pic1,B--D,black+.8pt);
draw(pic1,A--B--C--D--cycle,black+.8pt);
draw(pic1, O--B,red);
//label(pic1,"$O$",(0.02,-0.2),red);
label(pic1,"$O$",O, 1.5*dir(O--relpoint(C--D,2/3)),red);
//label(pic1,"$A$",A+(-0.15,0.),blue);
label(pic1,"$A$",A,W,blue);
label(pic1,"$B$",B, dir(D--B),blue);//dot(B,linewidth(6)+green);
//label(pic1,"$C$",C+(0.05,0.2),blue);
label(pic1, "$C$",C,E,blue);
//label(pic1,"$D$",D+(0.05,-0.2),blue);
label(pic1,"$D$",D,dir(B--D),blue); //dot(D,linewidth(6)+red);
label(pic1,"$|AC|=1$",D+(0.9,0),blue);
perpendicular(pic1, B,SE,B--C,blue);
perpendicular(pic1, D,NE,D--C,blue);
markangle("$2\alpha$",C,O,B,n=1,radius=7mm,red);
markangle("$\alpha$",C,A,B,n=1,radius=7mm,blue);
markangle("$\beta$",D,A,C,n=2,radius=7mm,blue);
plot_label(pic1, B, C, "$\sin\alpha$",.0875);
plot_label(pic1, A, B, "$\cos\alpha$",.0825);
plot_label(pic1, D, C, "$\sin\beta$",.1);
plot_label(pic1, A, D, "$\cos\beta$",.1);
plot_label(pic1, D, B, "$\sin(\alpha+\beta)$",.1);
/* dot(pic1,O,blue+3pt);
dot(pic1,A,blue+3pt);
dot(pic1,B,blue+3pt);
dot(pic1,C,blue+3pt);*/
// dot(pic1, O^^A^^B^^C^^D,blue+3pt);
real degreesz1z2(pair z1, pair z2)
{return degrees(dir(z1 -- z2));}
real other_alpha=degreesz1z2(A,B);//55=(90+20)/2
//draw(pic1,arc(A,2*Cos(other_alpha),0,other_alpha));//re-convinces
real gr=(sqrt(5)-1)/2;
dot(pic1, A^^B^^C^^D,blue+linewidth(gr),UnFill);
dot(pic1,O,red,UnFill);
add(pic1);
shipout(scale(1)*bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/0/f/1/0f1365be478403b85ef804e4e2ac5a42683f87bd.png)
Figure 6a:
Trigonometric Identities in the Circle of Thales

![[asy]
import graph;
import geometry;
import markers;
usepackage("amsmath");
//usepackage("mtpro2");
//settings.outformat="pdf"; // output is pdf
size(7.4cm, keepAspect=true);
defaultpen(fontsize(12pt));
real degreesz1z2(pair z1, pair z2)
{return degrees(dir(z1 -- z2));}
void plot_label(picture pic, pair A, pair B, string s, real l)
{
pair AB=B-A;
AB=AB/length(AB);
real alpha=degrees(acos(AB.x));
if ( AB.y < 0 ) alpha = -alpha;
pair normal=(-AB.y,AB.x);
label(pic,rotate(alpha)*s,.5(A+B)+l*normal,blue);
}
picture pic1, pic2, pic3;
// pic 2
real alpha=20;
real r = 1;
pair O=(0,0);
real alpha1=20;
real alpha2=20+90;
real alpha3=180+45;
real alpha4=180+75;
draw(pic3,unitcircle,red+1.2pt);
// pic1
real alpha1=0;
real alpha2=180;
real alpha3=90+20;
real alpha4=180+85;
draw(pic1,unitcircle,red+1.2pt);
pair A=dir(alpha2);
pair C=dir(alpha1);
pair B=dir(alpha3);
pair D=dir(alpha4);
draw(pic1,O--A,black+.8pt);
draw(pic1,O--C,black+.8pt);
draw(pic1,B--D,black+.8pt);
draw(pic1,A--B--C--D--cycle,black+.8pt);
draw(pic1, O--B,red);
//label(pic1,"$O$",(0.02,-0.2),red);
label(pic1,"$O$",O, 1.5*dir(O--relpoint(C--D,2/3)),red);
//label(pic1,"$A$",A+(-0.15,0.),blue);
label(pic1,"$A$",A,W,blue);
label(pic1,"$B$",B, dir(D--B),blue);//dot(B,linewidth(6)+green);
//label(pic1,"$C$",C+(0.05,0.2),blue);
label(pic1, "$C$",C,E,blue);
//label(pic1,"$D$",D+(0.05,-0.2),blue);
label(pic1,"$D$",D,dir(B--D),blue); //dot(D,linewidth(6)+red);
label(pic1,"$|AC|=2$",D+(0.9,0),blue);
perpendicular(pic1, B,SE,B--C,blue);
perpendicular(pic1, D,NE,D--C,blue);
markangle("$2\alpha$",C,O,B,n=1,radius=7mm,red);
markangle("$\alpha$",C,A,B,n=1,radius=7mm,blue);
markangle("$\beta$",D,A,C,n=2,radius=7mm,blue);
plot_label(pic1, B, C, "$2\sin\alpha$",.0875);
plot_label(pic1, A, B, "$2\cos\alpha$",.0825);
plot_label(pic1, D, C, "$2\sin\beta$",.1);
plot_label(pic1, A, D, "$2\cos\beta$",.1);
//plot_label(pic1, D, B, "$2\sin(\alpha+\beta)$",.1);
real degreesBD=degreesz1z2(B,D);
label(pic1, rotate(degreesBD-180)*"$2\sin(\alpha+\beta)$", relpoint(B--D,.537),.5*dir(W),blue);
/* dot(pic1,O,blue+3pt);
dot(pic1,A,blue+3pt);
dot(pic1,B,blue+3pt);
dot(pic1,C,blue+3pt);*/
// dot(pic1, O^^A^^B^^C^^D,blue+3pt);
real other_alpha=degreesz1z2(A,B);//55=(90+20)/2
//draw(pic1,arc(A,2*Cos(other_alpha),0,other_alpha));//re-convinces
real gr=(sqrt(5)-1)/2;
dot(pic1, A^^B^^C^^D,blue+linewidth(gr),UnFill);
dot(pic1,O,red,UnFill);
add(pic1);
shipout(scale(1)*bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/4/d/0/4d00b1289934d7b1a27ed09ed1cbf816345695ac.png)
Figure 6b:
Trigonometric Identities in the Circle of Thales

![[asy]
import graph;
import geometry;
real degreesz1z2(pair z1, pair z2)
{return degrees(dir(z1 -- z2));}
size(8cm);
unitsize(.23cm);
pair A = (5, 12);
pair B = (0, 0);
pair C = (5 + 2035/69, 0);
pair D = (10, 0);
pair myE = (5/2 + 2035/138, -400/23);
pair mpBC=midpoint(B--C);
pair O=midpoint(B--C);
pair Afoot1=(A.x,0);
pair Afoot2=foot(A,C,myE);
real degreesBA=degreesz1z2(B,A);
real degreesBE=degreesz1z2(B,myE);
real degreesCE=degreesz1z2(C,myE);
real degreesEC=degreesz1z2(myE,C);
real degreesEA=degreesz1z2(myE,A);
real degreesOA=degreesz1z2(O,A);
real theta=degreesz1z2(O,A);
fill(A--myE--C--cycle, red+white);
//fill(A--B--O--cycle,lightgreen);
fill(A--B--D--cycle,mediumred+white);
draw(arc(mpBC,2.8,0,degreesz1z2(mpBC,A)),blue);
draw(arc(B,3.8,0,degreesBA),blue);
//draw(arc(myE,3.8, degreesEC,degreesEA),blue);
draw(arc(myE,5.8, 45,45+theta/2),blue);
label("$\theta$",mpBC,dir(.5*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",B,dir(.2*degreesz1z2(mpBC,A)),blue);
label("$\theta/2$",myE,4.5*dir(myE--C,myE--A),blue);
//draw(circle(A,arclength(A--B)));//AB=AD?
//draw(circle(A,arclength(A--C)));// AC=AE?
//draw(arc(myE,5,degreesEC,degreesEC+90));
draw(A--(A.x,0),red);
draw(A--mpBC,red);
draw(O--Afoot2,red+Dotted);
draw(circumcircle(A,B,C),red);
//label("$A$", A, N);
label("$A$", A, dir(mpBC--A));
label("$B$", B, W);
label("$C$", C, E);
label("$D$", D, NE);
label("$E$", myE, S);
label("$O$",O,dir(O--B,A--O),red);
//label("$\alpha$", D, dir(D--B,D--myE));//???
perpfactor=.8;
//perpendicularmark(myE,dir(myE--B,myE--C),blue);
perpendicularmark(myE,N,blue);
perpendicularmark(Afoot1,NE,blue);
perpendicularmark(Afoot2,dir(degreesEC+45),blue);
perpendicularmark(A,dir(A--B,A--C),blue);
draw(A--B--C--cycle);
draw(A--D);
draw(B--myE--C);
draw(D--myE);
draw(anglemark(B, A, D, 75));
draw(anglemark(D, A, C, 75));
draw(anglemark(myE, B, D, 75));
pair Ap=(A.x,-A.y);
pair F=intersectionpoint(A--myE,Ap--C);
pair G=intersectionpoint(B--myE,Ap--C);
filldraw(B--Ap--C--cycle,green);
label("$A^\prime$",Ap,dir(O--Ap));
label("$F$",F,1.25*dir(A--myE,C--Ap)*dir(-3));
label("$G$",G,1.0*dir(B--myE,C--Ap)*dir(-8));
draw(B--myE^^D--myE);
perpendicularmark(F,dir(F--A,F--C),blue);
perpendicularmark(Ap,dir(Ap--B,Ap--G),blue);
dot(A^^Ap^^B^^C^^D^^myE^^F^^G^^O,red,Fill(white));
shipout(bbox(2mm,Fill(white)));
[/asy]](http://latex.artofproblemsolving.com/f/6/1/f6106c1e7d93d56441311f51332048f531d07ac3.png)
Figure 7: Quadrilateral (Four-sided Figure) 
A Kite - composed of two Halves, which are same Right Triangles

A Kite - composed of two Halves, which are same Right Triangles
This post has been edited 9 times. Last edited by Klaus-Anton, Apr 4, 2023, 9:09 AM