Six Point Circle Theorem
by yayups, Jun 28, 2017, 2:11 AM
Let us start by stating the theorem:
We need to start by defining the terminology in the theorem.
Isogonal Conjugates and Pedal Triangles![[asy]
unitsize(0.4inch);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.3, xmax = 19.28, ymin = -8.18, ymax = 6.64; /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0); draw(arc((4,-2),0.6,50.548466293718064,71.56505117707799)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((4,-2),0.6,0,21.01658488335992)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((6,4),0.6,-108.43494882292202,-95.87739260664314)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((6,4),0.6,-62.75198512401367,-50.19442890773481)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((11,-2),0.6,129.8055710922652,149.31193324506293)--(11,-2)--cycle, linewidth(1.2) + blue); draw(arc((11,-2),0.6,160.49363784720225,180)--(11,-2)--cycle, linewidth(1.2) + blue); /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((6,4)--(5.58,-0.08), linewidth(1.2)); draw((5.58,-0.08)--(4,-2), linewidth(1.2)); draw((11,-2)--(5.58,-0.08), linewidth(1.2)); draw((6,4)--(8.249204376685965,-0.3674718879762374), linewidth(1.2)); draw((8.249204376685965,-0.3674718879762374)--(4,-2), linewidth(1.2)); draw((8.249204376685965,-0.3674718879762374)--(11,-2), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.08,-1.88), NE * labelscalefactor); dot((5.58,-0.08),linewidth(3pt) + dotstyle); label("$P$", (5.24,-0.88), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (6.08,4.12), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.68,-2.38), NE * labelscalefactor); dot((8.249204376685965,-0.3674718879762374),linewidth(3pt) + dotstyle); label("$Q$", (8.32,-0.24), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](//latex.artofproblemsolving.com/d/a/d/dad25a06403db3b9d578b56df51168e5e50d3ef0.png)
Given a point
inside a triangle
, we define the isogonal conjugate of
with respect to
to be the point
inside the triangle such that
Let us now justify the existence and uniqueness of
. Let
be the reflection of ray
across the
-angle bisector, and define
and
similarly. Then, by the definition of
, we have that
is the intersection of
. We must show that these concur.
By the trigonometric form of Ceva's theorem, we need to show that
However, by the definition of
, we have that
where the last equality follows again from trig Ceva. This justifies the existence and uniqueness of
, the isogonal conjugate of
.
Some examples of isogonal conjugates:
1) The circumcenter
and the orthocenter
are isogonal conjugates.
2) The incenter
is the isogonal conjugate of itself.
Let us now define the pedal triangle of
. Fortunately, this definition is much simpler than that of isogonal conjugates, namely it is the triangle formed by the feet of the altitudes from
.
![[asy]
unitsize(0.4inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.3, xmax = 19.54, ymin = -8.52, ymax = 6.3; /* image dimensions */ /* draw figures */draw((5,3)--(4,-2), linewidth(1.2)); draw((4,-2)--(9,-2), linewidth(1.2)); draw((5,3)--(9,-2), linewidth(1.2)); draw((5.44,-0.48)--(5.44,-2), linewidth(1.2)); draw((5.44,-0.48)--(6.869268292682927,0.6634146341463415), linewidth(1.2)); draw((5.44,-0.48)--(4.3476923076923075,-0.26153846153846144), linewidth(1.2)); draw((4.3476923076923075,-0.26153846153846144)--(5.44,-2), linewidth(1.2)); draw((5.44,-2)--(6.869268292682927,0.6634146341463415), linewidth(1.2)); draw((6.869268292682927,0.6634146341463415)--(4.3476923076923075,-0.26153846153846144), linewidth(1.2)); /* dots and labels */dot((5,3),linewidth(3pt) + dotstyle); label("$A$", (4.92,3.28), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.72,-2.36), NE * labelscalefactor); dot((9,-2),linewidth(3pt) + dotstyle); label("$C$", (9.2,-2.36), NE * labelscalefactor); dot((5.44,-0.48),linewidth(3pt) + dotstyle); label("$P$", (5.62,-0.78), NE * labelscalefactor); dot((4.3476923076923075,-0.26153846153846144),linewidth(3pt) + dotstyle); label("$F$", (4.06,0.04), NE * labelscalefactor); dot((5.44,-2),linewidth(3pt) + dotstyle); label("$D$", (5.58,-2.46), NE * labelscalefactor); dot((6.869268292682927,0.6634146341463415),linewidth(3pt) + dotstyle); label("$E$", (6.88,0.94), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](//latex.artofproblemsolving.com/c/f/2/cf2ecd8706dac1598373d216c060d2f7b927ef2e.png)
In the above diagram,
is the pedal triangle of
.
Let us now prove 2 lemmas:
Proof of Lemma 1![[asy]
unitsize(0.5inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.0869049397725, xmax = 19.061648968940588, ymin = -7.815479713501164, ymax = 5.595840416566367; /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0); draw(arc((4,-2),0.5429684263185244,43.047490950600384,71.56505117707799)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((4,-2),0.5429684263185244,0,28.517560226477617)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((6,4),0.5429684263185244,-108.43494882292202,-92.3970285300596)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((6,4),0.5429684263185244,-66.23234920059723,-50.19442890773481)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((11,-2),0.5429684263185244,129.8055710922652,147.9746481366836)--(11,-2)--cycle, linewidth(1.2) + blue); draw(arc((11,-2),0.5429684263185244,161.8309229555816,180)--(11,-2)--cycle, linewidth(1.2) + blue); /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((6,4)--(5.82,-0.3), linewidth(1.2)); draw((5.82,-0.3)--(4,-2), linewidth(1.2)); draw((11,-2)--(5.82,-0.3), linewidth(1.2)); draw((6,4)--(7.745938896453845,0.035365643159894405), linewidth(1.2)); draw((7.745938896453845,0.035365643159894405)--(4,-2), linewidth(1.2)); draw((7.745938896453845,0.035365643159894405)--(11,-2), linewidth(1.2)); draw((5.82,-2)--(8.040983606557377,1.5508196721311474), linewidth(1.2)); draw((8.040983606557377,1.5508196721311474)--(4.692,0.076), linewidth(1.2)); draw((4.692,0.076)--(5.82,-2), linewidth(1.2)); draw((5.82,-0.3)--(5.82,-2), linewidth(1.2)); draw((5.82,-0.3)--(8.040983606557377,1.5508196721311474), linewidth(1.2)); draw((5.82,-0.3)--(4.692,0.076), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.080013102058281,-1.8971238666292574), NE * labelscalefactor); dot((5.82,-0.3),linewidth(3pt) + dotstyle); label("$P$", (5.849417261856496,-0.7206922762724564), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (6.066604632383906,4.111726717962403), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.7137414516703,-2.349597555228027), NE * labelscalefactor); dot((7.745938896453845,0.035365643159894405),linewidth(3pt) + dotstyle); label("$Q$", (7.822202544147135,0.14805720583718135), NE * labelscalefactor); dot((5.82,-2),linewidth(3pt) + dotstyle); label("$D$", (5.758922524136742,-2.6210817683872887), NE * labelscalefactor); dot((8.040983606557377,1.5508196721311474),linewidth(3pt) + dotstyle); label("$E$", (8.419467813097512,1.7226656421608997), NE * labelscalefactor); dot((4.692,0.076),linewidth(3pt) + dotstyle); label("$F$", (4.347204615708579,0.36524457636459073), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](//latex.artofproblemsolving.com/1/c/7/1c7fd691e0515e1a6757b8114c4fe9e69359692e.png)
Note that
is cyclic, since
, so we have that
which implies that
. We can prove
and
similarly. 
Proof of Lemma 2![[asy]
unitsize(0.6inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 0.9834644599080093, xmax = 12.07199890572956, ymin = -5.865586928861976, ymax = 4.548359870065437; /* image dimensions */ /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((6,4)--(7.339208318219085,-0.8606143187314435), linewidth(1.2)); draw((7.339208318219085,-0.8606143187314435)--(4,-2), linewidth(1.2)); draw((7.339208318219085,-0.8606143187314435)--(11,-2), linewidth(1.2)); draw((6.309896088509236,-2)--(7.5852610809503,2.0976867028596398), linewidth(1.2)); draw((7.5852610809503,2.0976867028596398)--(5.141454371598549,1.4243631147956475), linewidth(1.2)); draw((5.141454371598549,1.4243631147956475)--(6.309896088509236,-2), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(6.309896088509236,-2), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(7.5852610809503,2.0976867028596398), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(5.141454371598549,1.4243631147956475), linewidth(1.2)); draw(circle((7.5,0.16666666666666666), 4.1163630117428225), linewidth(1.2)); draw((3.973012654687862,1.8138436870992094)--(8.860626073391364,3.160490863227194), linewidth(1.2)); draw((8.860626073391364,3.160490863227194)--(6.309896088509236,-5.0348825424920856), linewidth(1.2)); draw((6.309896088509236,-5.0348825424920856)--(3.973012654687862,1.8138436870992094), linewidth(1.2)); draw((6,4)--(3.973012654687862,1.8138436870992094), linewidth(1.2)); draw((3.973012654687862,1.8138436870992094)--(4,-2), linewidth(1.2)); draw((4,-2)--(6.309896088509236,-5.0348825424920856), linewidth(1.2)); draw((6.309896088509236,-5.0348825424920856)--(11,-2), linewidth(1.2)); draw((11,-2)--(8.860626073391364,3.160490863227194), linewidth(1.2)); draw((8.860626073391364,3.160490863227194)--(6,4), linewidth(1.2)); draw((6,4)--(6.309896088509236,1.0348825424920856), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(4,-2), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(11,-2), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.130386981939896,-2.183462689565104), NE * labelscalefactor); dot((6.309896088509236,1.0348825424920856),linewidth(3pt) + dotstyle); label("$P$", (6.422327362991583,0.5851574445626965), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (6.056925720923953,4.084580862825755), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.78019241265641,-2.267786145426865), NE * labelscalefactor); dot((7.339208318219085,-0.8606143187314435),linewidth(3pt) + dotstyle); label("$Q$", (7.392047105401833,-0.7780717585357638), NE * labelscalefactor); dot((6.309896088509236,-2),linewidth(3pt) + dotstyle); label("$D$", (6.0288179023033655,-2.309947873357745), NE * labelscalefactor); dot((7.5852610809503,2.0976867028596398),linewidth(3pt) + dotstyle); label("$E$", (7.883933931262105,2.229464833867025), NE * labelscalefactor); dot((5.141454371598549,1.4243631147956475),linewidth(3pt) + dotstyle); label("$F$", (4.74991215506666,1.3440685473185403), NE * labelscalefactor); dot((6.309896088509236,-5.0348825424920856),linewidth(3pt) + dotstyle); label("$X$", (6.338003907129822,-5.415861830932587), NE * labelscalefactor); dot((8.860626073391364,3.160490863227194),linewidth(3pt) + dotstyle); label("$Y$", (8.909869310913528,3.2413463042081503), NE * labelscalefactor); dot((3.973012654687862,1.8138436870992094),linewidth(3pt) + dotstyle); label("$Z$", (3.73803068472553,1.5127154590420613), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](//latex.artofproblemsolving.com/d/3/6/d36259ed3736bce1f1fab0e0939b84ec947786bf.png)
Note that
, and by Lemma 1, we have that
. Thus,
. Now, all we have to show is that
is the perpendicular bisector of
, i.e.
.
However, note that
since
is the reflection of
in
, which is the reflection of
in
since
. Thus,
, and similarly,
. Thus,
, so
is the perpendicular bisector of
,
is the perpendicular bisector of
, and
is the perpendicular bisector of
. Therefore, the circumcenter of
is
.
Let us now prove the six point circle theorem.
Proof of Six Point Circle![[asy]
unitsize(0.6inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -1.054352390084544, xmax = 13.814683660205949, ymin = -5.739101745069337, ymax = 4.674845053858077; /* image dimensions */ /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((5.76179362540779,-2)--(7.471217062776607,2.234539524668071), linewidth(1.2)); draw((7.471217062776607,2.234539524668071)--(5.019185360598996,1.057556081796988), linewidth(1.2)); draw((5.019185360598996,1.057556081796988)--(5.76179362540779,-2), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(5.76179362540779,-2), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(7.471217062776607,2.234539524668071), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(5.019185360598996,1.057556081796988), linewidth(1.2)); draw(circle((7.5,0.16666666666666666), 4.1163630117428225), linewidth(1.2)); draw((4.7554975228669045,0.26649256860071385)--(9.400291308563407,-0.08034957027608826), linewidth(1.2)); draw((9.400291308563407,-0.08034957027608826)--(8.370500631687378,-2), linewidth(1.2)); draw((8.370500631687378,-2)--(4.7554975228669045,0.26649256860071385), linewidth(1.2)); draw((4.7554975228669045,0.26649256860071385)--(8.37050063168738,-0.9385084676727777), linewidth(1.2)); draw((8.37050063168738,-0.9385084676727777)--(8.370500631687378,-2), linewidth(1.2)); draw((8.37050063168738,-0.9385084676727777)--(9.400291308563407,-0.08034957027608826), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(8.37050063168738,-0.9385084676727777), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.130386981939896,-2.183462689565105), NE * labelscalefactor); dot((5.76179362540779,0.8100199935273902),linewidth(3pt) + dotstyle); label("$P$", (5.663416260235736,0.978666905250911), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (5.916386627821018,4.253227774549274), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.780192412656411,-2.2677861454268657), NE * labelscalefactor); dot((8.37050063168738,-0.9385084676727777),linewidth(3pt) + dotstyle); label("$Q$", (8.375820757122376,-0.5672631188813635), NE * labelscalefactor); dot((5.76179362540779,-2),linewidth(3pt) + dotstyle); label("$A_1$", (5.480715439201921,-2.309947873357746), NE * labelscalefactor); dot((7.471217062776607,2.234539524668071),linewidth(3pt) + dotstyle); label("$B_1$", (7.771502656779757,2.355950017659665), NE * labelscalefactor); dot((5.019185360598996,1.057556081796988),linewidth(3pt) + dotstyle); label("$C_1$", (4.62342697127402,0.978666905250911), NE * labelscalefactor); dot((5.76179362540779,-4.810019993527391),linewidth(3pt) + dotstyle); label("$X$", (5.789901444028377,-5.190999281967894), NE * labelscalefactor); dot((9.180640500145424,3.659059055808752),linewidth(3pt) + dotstyle); label("$Y$", (9.373648318153212,3.2835080321390295), NE * labelscalefactor); dot((4.276577095790202,1.3050921700665858),linewidth(3pt) + dotstyle); label("$Z$", (4.033162780241693,1.006774723871498), NE * labelscalefactor); dot((4.7554975228669045,0.26649256860071385),linewidth(3pt) + dotstyle); label("$C_2$", (4.314240966447563,0.33218707697741445), NE * labelscalefactor); dot((8.370500631687378,-2),linewidth(3pt) + dotstyle); label("$A_2$", (8.403928575742963,-2.394271329219506), NE * labelscalefactor); dot((9.400291308563407,-0.08034957027608826),linewidth(3pt) + dotstyle); label("$B_2$", (9.68283432297967,0.09327061870242653), NE * labelscalefactor); dot((7.066147128547585,-0.06424423707269378),linewidth(3pt) + dotstyle); label("$M$", (7.349885377470952,-0.18780756750344157), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](//latex.artofproblemsolving.com/e/a/d/ead8ec48e154e50ece7ed2f2b2f937770e610cb3.png)
Let
be the reflection of
in
,
the reflection of
in
, and
the reflection of
in
. By lemma 2, we know that the center of
is
.
Define a homothety
centered at
with scale factor of
. Then,
,
, and
, so the center of the circle
is
, where
is the midpoint of
. Thus, we have that
. Similarly, we can show that
.
Now, note that
, and
, so
. Similarly,
, and
, so
. This completes the proof.
Note that if we take
, the circumcenter, and use the fact that the isogonal conjugate of
is the orthocenter
, we retrieve the nine-point circle. Notice how the proofs are very similar as well. One thing to note is that the points on the nine-point circle that are the midpoints of the orthocenter to the vertices do not have an easy generalization in the more general six point circle setting.
Six Point Circle Theorem wrote:
Let
be a point in the interior of triangle
, and let
be the isogonal conjugate of
. Let the pedal triangle of
be
, and let the pedal triangle of
be
. Then,
lie on a circle with center the midpoint of
.










We need to start by defining the terminology in the theorem.
Isogonal Conjugates and Pedal Triangles
![[asy]
unitsize(0.4inch);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.3, xmax = 19.28, ymin = -8.18, ymax = 6.64; /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0); draw(arc((4,-2),0.6,50.548466293718064,71.56505117707799)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((4,-2),0.6,0,21.01658488335992)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((6,4),0.6,-108.43494882292202,-95.87739260664314)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((6,4),0.6,-62.75198512401367,-50.19442890773481)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((11,-2),0.6,129.8055710922652,149.31193324506293)--(11,-2)--cycle, linewidth(1.2) + blue); draw(arc((11,-2),0.6,160.49363784720225,180)--(11,-2)--cycle, linewidth(1.2) + blue); /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((6,4)--(5.58,-0.08), linewidth(1.2)); draw((5.58,-0.08)--(4,-2), linewidth(1.2)); draw((11,-2)--(5.58,-0.08), linewidth(1.2)); draw((6,4)--(8.249204376685965,-0.3674718879762374), linewidth(1.2)); draw((8.249204376685965,-0.3674718879762374)--(4,-2), linewidth(1.2)); draw((8.249204376685965,-0.3674718879762374)--(11,-2), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.08,-1.88), NE * labelscalefactor); dot((5.58,-0.08),linewidth(3pt) + dotstyle); label("$P$", (5.24,-0.88), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (6.08,4.12), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.68,-2.38), NE * labelscalefactor); dot((8.249204376685965,-0.3674718879762374),linewidth(3pt) + dotstyle); label("$Q$", (8.32,-0.24), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](http://latex.artofproblemsolving.com/d/a/d/dad25a06403db3b9d578b56df51168e5e50d3ef0.png)
Given a point





![\[\angle PAB = \angle QAC, \angle PBA = \angle QBC, \angle PCB = \angle QCB.\]](http://latex.artofproblemsolving.com/0/c/6/0c69d3d7bea94dfb9aa5afa379cfbdedb00acc30.png)









By the trigonometric form of Ceva's theorem, we need to show that
![\[\frac{\sin\angle(\ell_A,AB)}{\sin\angle(\ell_A,AC)}\frac{\sin\angle(\ell_C,CA)}{\sin\angle(\ell_C,CB)}\frac{\sin\angle(\ell_B,BC)}{\sin\angle(\ell_B,BA)}=1.\]](http://latex.artofproblemsolving.com/4/4/4/444e2347b80612244c60c2634076b55fe370db44.png)

![\[\frac{\sin\angle(\ell_A,AB)}{\sin\angle(\ell_A,AC)}\frac{\sin\angle(\ell_C,CA)}{\sin\angle(\ell_C,CB)}\frac{\sin\angle(\ell_B,BC)}{\sin\angle(\ell_B,BA)}
=
\frac{\sin\angle PAC}{\sin\angle PAB}\frac{\sin\angle PBA}{\sin\angle PBC}\frac{\sin\angle PCB}{\sin\angle PCA}
=
1
\]](http://latex.artofproblemsolving.com/3/f/a/3fa6452025f9b0b7811cef06426fea0e10d70680.png)


Some examples of isogonal conjugates:
1) The circumcenter


2) The incenter

Let us now define the pedal triangle of


![[asy]
unitsize(0.4inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.3, xmax = 19.54, ymin = -8.52, ymax = 6.3; /* image dimensions */ /* draw figures */draw((5,3)--(4,-2), linewidth(1.2)); draw((4,-2)--(9,-2), linewidth(1.2)); draw((5,3)--(9,-2), linewidth(1.2)); draw((5.44,-0.48)--(5.44,-2), linewidth(1.2)); draw((5.44,-0.48)--(6.869268292682927,0.6634146341463415), linewidth(1.2)); draw((5.44,-0.48)--(4.3476923076923075,-0.26153846153846144), linewidth(1.2)); draw((4.3476923076923075,-0.26153846153846144)--(5.44,-2), linewidth(1.2)); draw((5.44,-2)--(6.869268292682927,0.6634146341463415), linewidth(1.2)); draw((6.869268292682927,0.6634146341463415)--(4.3476923076923075,-0.26153846153846144), linewidth(1.2)); /* dots and labels */dot((5,3),linewidth(3pt) + dotstyle); label("$A$", (4.92,3.28), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.72,-2.36), NE * labelscalefactor); dot((9,-2),linewidth(3pt) + dotstyle); label("$C$", (9.2,-2.36), NE * labelscalefactor); dot((5.44,-0.48),linewidth(3pt) + dotstyle); label("$P$", (5.62,-0.78), NE * labelscalefactor); dot((4.3476923076923075,-0.26153846153846144),linewidth(3pt) + dotstyle); label("$F$", (4.06,0.04), NE * labelscalefactor); dot((5.44,-2),linewidth(3pt) + dotstyle); label("$D$", (5.58,-2.46), NE * labelscalefactor); dot((6.869268292682927,0.6634146341463415),linewidth(3pt) + dotstyle); label("$E$", (6.88,0.94), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](http://latex.artofproblemsolving.com/c/f/2/cf2ecd8706dac1598373d216c060d2f7b927ef2e.png)
In the above diagram,


Let us now prove 2 lemmas:
Lemma 1 wrote:
Let
be the pedal triangle of
with repsect to triangle
, and let
be the isogonal conjugate of
. Then,
,
, and
.








![[asy]
unitsize(0.5inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.0869049397725, xmax = 19.061648968940588, ymin = -7.815479713501164, ymax = 5.595840416566367; /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0); draw(arc((4,-2),0.5429684263185244,43.047490950600384,71.56505117707799)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((4,-2),0.5429684263185244,0,28.517560226477617)--(4,-2)--cycle, linewidth(1.2) + qqwuqq); draw(arc((6,4),0.5429684263185244,-108.43494882292202,-92.3970285300596)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((6,4),0.5429684263185244,-66.23234920059723,-50.19442890773481)--(6,4)--cycle, linewidth(1.2) + red); draw(arc((11,-2),0.5429684263185244,129.8055710922652,147.9746481366836)--(11,-2)--cycle, linewidth(1.2) + blue); draw(arc((11,-2),0.5429684263185244,161.8309229555816,180)--(11,-2)--cycle, linewidth(1.2) + blue); /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((6,4)--(5.82,-0.3), linewidth(1.2)); draw((5.82,-0.3)--(4,-2), linewidth(1.2)); draw((11,-2)--(5.82,-0.3), linewidth(1.2)); draw((6,4)--(7.745938896453845,0.035365643159894405), linewidth(1.2)); draw((7.745938896453845,0.035365643159894405)--(4,-2), linewidth(1.2)); draw((7.745938896453845,0.035365643159894405)--(11,-2), linewidth(1.2)); draw((5.82,-2)--(8.040983606557377,1.5508196721311474), linewidth(1.2)); draw((8.040983606557377,1.5508196721311474)--(4.692,0.076), linewidth(1.2)); draw((4.692,0.076)--(5.82,-2), linewidth(1.2)); draw((5.82,-0.3)--(5.82,-2), linewidth(1.2)); draw((5.82,-0.3)--(8.040983606557377,1.5508196721311474), linewidth(1.2)); draw((5.82,-0.3)--(4.692,0.076), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.080013102058281,-1.8971238666292574), NE * labelscalefactor); dot((5.82,-0.3),linewidth(3pt) + dotstyle); label("$P$", (5.849417261856496,-0.7206922762724564), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (6.066604632383906,4.111726717962403), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.7137414516703,-2.349597555228027), NE * labelscalefactor); dot((7.745938896453845,0.035365643159894405),linewidth(3pt) + dotstyle); label("$Q$", (7.822202544147135,0.14805720583718135), NE * labelscalefactor); dot((5.82,-2),linewidth(3pt) + dotstyle); label("$D$", (5.758922524136742,-2.6210817683872887), NE * labelscalefactor); dot((8.040983606557377,1.5508196721311474),linewidth(3pt) + dotstyle); label("$E$", (8.419467813097512,1.7226656421608997), NE * labelscalefactor); dot((4.692,0.076),linewidth(3pt) + dotstyle); label("$F$", (4.347204615708579,0.36524457636459073), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](http://latex.artofproblemsolving.com/1/c/7/1c7fd691e0515e1a6757b8114c4fe9e69359692e.png)
Note that


![\[\angle EAQ + \angle AEF = \angle PAF + \angle APF = 90\]](http://latex.artofproblemsolving.com/c/d/9/cd9d7a50b7eb83207d1aa6f5990323e3a9535698.png)




Lemma 2 wrote:
Consider the same setup as in Lemma 1. Define
to be the reflection of
in
,
to be the reflection of
in
, and
to be the reflection of
in
. Then, the circumcenter of
is
.











![[asy]
unitsize(0.6inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 0.9834644599080093, xmax = 12.07199890572956, ymin = -5.865586928861976, ymax = 4.548359870065437; /* image dimensions */ /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((6,4)--(7.339208318219085,-0.8606143187314435), linewidth(1.2)); draw((7.339208318219085,-0.8606143187314435)--(4,-2), linewidth(1.2)); draw((7.339208318219085,-0.8606143187314435)--(11,-2), linewidth(1.2)); draw((6.309896088509236,-2)--(7.5852610809503,2.0976867028596398), linewidth(1.2)); draw((7.5852610809503,2.0976867028596398)--(5.141454371598549,1.4243631147956475), linewidth(1.2)); draw((5.141454371598549,1.4243631147956475)--(6.309896088509236,-2), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(6.309896088509236,-2), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(7.5852610809503,2.0976867028596398), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(5.141454371598549,1.4243631147956475), linewidth(1.2)); draw(circle((7.5,0.16666666666666666), 4.1163630117428225), linewidth(1.2)); draw((3.973012654687862,1.8138436870992094)--(8.860626073391364,3.160490863227194), linewidth(1.2)); draw((8.860626073391364,3.160490863227194)--(6.309896088509236,-5.0348825424920856), linewidth(1.2)); draw((6.309896088509236,-5.0348825424920856)--(3.973012654687862,1.8138436870992094), linewidth(1.2)); draw((6,4)--(3.973012654687862,1.8138436870992094), linewidth(1.2)); draw((3.973012654687862,1.8138436870992094)--(4,-2), linewidth(1.2)); draw((4,-2)--(6.309896088509236,-5.0348825424920856), linewidth(1.2)); draw((6.309896088509236,-5.0348825424920856)--(11,-2), linewidth(1.2)); draw((11,-2)--(8.860626073391364,3.160490863227194), linewidth(1.2)); draw((8.860626073391364,3.160490863227194)--(6,4), linewidth(1.2)); draw((6,4)--(6.309896088509236,1.0348825424920856), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(4,-2), linewidth(1.2)); draw((6.309896088509236,1.0348825424920856)--(11,-2), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.130386981939896,-2.183462689565104), NE * labelscalefactor); dot((6.309896088509236,1.0348825424920856),linewidth(3pt) + dotstyle); label("$P$", (6.422327362991583,0.5851574445626965), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (6.056925720923953,4.084580862825755), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.78019241265641,-2.267786145426865), NE * labelscalefactor); dot((7.339208318219085,-0.8606143187314435),linewidth(3pt) + dotstyle); label("$Q$", (7.392047105401833,-0.7780717585357638), NE * labelscalefactor); dot((6.309896088509236,-2),linewidth(3pt) + dotstyle); label("$D$", (6.0288179023033655,-2.309947873357745), NE * labelscalefactor); dot((7.5852610809503,2.0976867028596398),linewidth(3pt) + dotstyle); label("$E$", (7.883933931262105,2.229464833867025), NE * labelscalefactor); dot((5.141454371598549,1.4243631147956475),linewidth(3pt) + dotstyle); label("$F$", (4.74991215506666,1.3440685473185403), NE * labelscalefactor); dot((6.309896088509236,-5.0348825424920856),linewidth(3pt) + dotstyle); label("$X$", (6.338003907129822,-5.415861830932587), NE * labelscalefactor); dot((8.860626073391364,3.160490863227194),linewidth(3pt) + dotstyle); label("$Y$", (8.909869310913528,3.2413463042081503), NE * labelscalefactor); dot((3.973012654687862,1.8138436870992094),linewidth(3pt) + dotstyle); label("$Z$", (3.73803068472553,1.5127154590420613), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](http://latex.artofproblemsolving.com/d/3/6/d36259ed3736bce1f1fab0e0939b84ec947786bf.png)
Note that






However, note that


















Let us now prove the six point circle theorem.
Proof of Six Point Circle
![[asy]
unitsize(0.6inches);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(0cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -1.054352390084544, xmax = 13.814683660205949, ymin = -5.739101745069337, ymax = 4.674845053858077; /* image dimensions */ /* draw figures */draw((4,-2)--(11,-2), linewidth(1.2)); draw((4,-2)--(6,4), linewidth(1.2)); draw((6,4)--(11,-2), linewidth(1.2)); draw((5.76179362540779,-2)--(7.471217062776607,2.234539524668071), linewidth(1.2)); draw((7.471217062776607,2.234539524668071)--(5.019185360598996,1.057556081796988), linewidth(1.2)); draw((5.019185360598996,1.057556081796988)--(5.76179362540779,-2), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(5.76179362540779,-2), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(7.471217062776607,2.234539524668071), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(5.019185360598996,1.057556081796988), linewidth(1.2)); draw(circle((7.5,0.16666666666666666), 4.1163630117428225), linewidth(1.2)); draw((4.7554975228669045,0.26649256860071385)--(9.400291308563407,-0.08034957027608826), linewidth(1.2)); draw((9.400291308563407,-0.08034957027608826)--(8.370500631687378,-2), linewidth(1.2)); draw((8.370500631687378,-2)--(4.7554975228669045,0.26649256860071385), linewidth(1.2)); draw((4.7554975228669045,0.26649256860071385)--(8.37050063168738,-0.9385084676727777), linewidth(1.2)); draw((8.37050063168738,-0.9385084676727777)--(8.370500631687378,-2), linewidth(1.2)); draw((8.37050063168738,-0.9385084676727777)--(9.400291308563407,-0.08034957027608826), linewidth(1.2)); draw((5.76179362540779,0.8100199935273902)--(8.37050063168738,-0.9385084676727777), linewidth(1.2)); /* dots and labels */dot((11,-2),linewidth(3pt) + dotstyle); label("$C$", (11.130386981939896,-2.183462689565105), NE * labelscalefactor); dot((5.76179362540779,0.8100199935273902),linewidth(3pt) + dotstyle); label("$P$", (5.663416260235736,0.978666905250911), NE * labelscalefactor); dot((6,4),linewidth(3pt) + dotstyle); label("$A$", (5.916386627821018,4.253227774549274), NE * labelscalefactor); dot((4,-2),linewidth(3pt) + dotstyle); label("$B$", (3.780192412656411,-2.2677861454268657), NE * labelscalefactor); dot((8.37050063168738,-0.9385084676727777),linewidth(3pt) + dotstyle); label("$Q$", (8.375820757122376,-0.5672631188813635), NE * labelscalefactor); dot((5.76179362540779,-2),linewidth(3pt) + dotstyle); label("$A_1$", (5.480715439201921,-2.309947873357746), NE * labelscalefactor); dot((7.471217062776607,2.234539524668071),linewidth(3pt) + dotstyle); label("$B_1$", (7.771502656779757,2.355950017659665), NE * labelscalefactor); dot((5.019185360598996,1.057556081796988),linewidth(3pt) + dotstyle); label("$C_1$", (4.62342697127402,0.978666905250911), NE * labelscalefactor); dot((5.76179362540779,-4.810019993527391),linewidth(3pt) + dotstyle); label("$X$", (5.789901444028377,-5.190999281967894), NE * labelscalefactor); dot((9.180640500145424,3.659059055808752),linewidth(3pt) + dotstyle); label("$Y$", (9.373648318153212,3.2835080321390295), NE * labelscalefactor); dot((4.276577095790202,1.3050921700665858),linewidth(3pt) + dotstyle); label("$Z$", (4.033162780241693,1.006774723871498), NE * labelscalefactor); dot((4.7554975228669045,0.26649256860071385),linewidth(3pt) + dotstyle); label("$C_2$", (4.314240966447563,0.33218707697741445), NE * labelscalefactor); dot((8.370500631687378,-2),linewidth(3pt) + dotstyle); label("$A_2$", (8.403928575742963,-2.394271329219506), NE * labelscalefactor); dot((9.400291308563407,-0.08034957027608826),linewidth(3pt) + dotstyle); label("$B_2$", (9.68283432297967,0.09327061870242653), NE * labelscalefactor); dot((7.066147128547585,-0.06424423707269378),linewidth(3pt) + dotstyle); label("$M$", (7.349885377470952,-0.18780756750344157), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */
[/asy]](http://latex.artofproblemsolving.com/e/a/d/ead8ec48e154e50ece7ed2f2b2f937770e610cb3.png)
Let











Define a homothety












Now, note that






Note that if we take



This post has been edited 15 times. Last edited by yayups, Oct 10, 2017, 9:08 PM