Difference between revisions of "G285 MC10B Problems/Problem 1"

(Created page with "==Solution== {{AMC12 box|year=2007|ab=A|num-b=24|after=Last question}} Category:Intermediate Combinatorics Problems {{MAA Notice}}")
 
m (Solution)
Line 1: Line 1:
 +
==Problem==
 +
Find <math>\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil</math>
 +
 +
<math>\textbf{(A)}\ 42\qquad\textbf{(B)}\ 43\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 45\qquad\textbf{(E)}\ 46</math>
 +
 
==Solution==
 
==Solution==
 +
We have <cmath>\frac{6+24+120+720}{20} = \frac{87}{2} = \lfloor 43.5 \rfloor \implies \boxed{\textbf{(B)}\ 43}</cmath>
  
{{AMC12 box|year=2007|ab=A|num-b=24|after=Last question}}
+
{{MC10B box|year=2021|ab=B|num-b=1|after=2}}
[[Category:Intermediate Combinatorics Problems]]
 
{{MAA Notice}}
 

Revision as of 19:32, 20 June 2021

Problem

Find $\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil$

$\textbf{(A)}\ 42\qquad\textbf{(B)}\ 43\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 45\qquad\textbf{(E)}\ 46$

Solution

We have \[\frac{6+24+120+720}{20} = \frac{87}{2} = \lfloor 43.5 \rfloor \implies \boxed{\textbf{(B)}\ 43}\]

Template:MC10B box