Difference between revisions of "1977 USAMO Problems/Problem 3"
(→Solution) |
(→Solution) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
Given the roots <math>a,b,c,d</math> of the equation <math>x^{4}+x^{3}-1=0</math>. | Given the roots <math>a,b,c,d</math> of the equation <math>x^{4}+x^{3}-1=0</math>. | ||
− | First, Vieta's relations give <math>a+b+c+d = -1 , ab+ac+ad+bc+bd+cd=0, abcd = -1</math>. | + | First, Vieta's relations give <math>a+b+c+d = -1 , ab+ac+ad+bc+bd+cd=0, abc+abd+acd+bcd=0, abcd = -1</math>. |
Then <math>cd=-\frac{1}{ab}</math> and <math>c+d=-1-(a+b)</math>. | Then <math>cd=-\frac{1}{ab}</math> and <math>c+d=-1-(a+b)</math>. | ||
Line 11: | Line 11: | ||
The other coefficients give <math>ab+(a+b)(c+d)+cd = 0</math> or <math>ab+(a+b)[-1-(a+b)]-\frac{1}{ab}=0</math>. | The other coefficients give <math>ab+(a+b)(c+d)+cd = 0</math> or <math>ab+(a+b)[-1-(a+b)]-\frac{1}{ab}=0</math>. | ||
− | Let <math>a+b=s</math> and <math>ab=p</math> | + | Let <math>a+b=s</math> and <math>ab=p</math>. |
− | + | Thus, <math>0=ab+ac+ad+bc+bd+cd=p+s(-1-s)-\frac{1}{p}</math>. (1) | |
− | + | Also, <math>0=abc+abd+acd+bcd=p(-1-s)-s/p</math>. | |
− | Solving <math>s= \frac{ | + | Solving this equation for <math>s</math>, <math>s= \frac{-p^2}{p^2+1}</math>. |
− | + | Substituting into (1): <math>\frac{p^{6}+p^{4}+p^{3}-p^{2}-1}{p(p^2+1)^2}=0</math>. | |
− | |||
− | |||
Conclusion: <math>p =ab</math> is a root of <math>x^{6}+x^{4}+x^{3}-x^{2}-1=0</math>. | Conclusion: <math>p =ab</math> is a root of <math>x^{6}+x^{4}+x^{3}-x^{2}-1=0</math>. |
Latest revision as of 21:46, 20 September 2022
Problem
If and are two of the roots of , prove that is a root of .
Solution
Given the roots of the equation .
First, Vieta's relations give .
Then and .
The other coefficients give or .
Let and .
Thus, . (1)
Also, .
Solving this equation for , .
Substituting into (1): .
Conclusion: is a root of .
See Also
1977 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.