Difference between revisions of "2007 IMO Shortlist Problems/A2"
(Created page with "== Problem == (''Bulgaria'') Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition <cmath>f(m+n)\ge f(m)+f(f(n))−1</cmath> for all <mat...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
(''Bulgaria'') | (''Bulgaria'') | ||
Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition | Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition | ||
− | < | + | <center><math>f(m+n)\ge f(m)+f(f(n))-1</math></center> |
− | for all <math>m | + | for all <math>m, n\in\mathbb{N}</math>. Find all possible values of <math>f(2007).</math> |
− | (< | + | |
+ | (<math>\mathbb{N}</math> denotes the set of all integers.) | ||
+ | |||
+ | == Solution == |
Latest revision as of 07:30, 3 August 2023
Problem
(Bulgaria) Consider those functions which satisfy the condition
for all . Find all possible values of
( denotes the set of all integers.)