Difference between revisions of "2007 IMO Shortlist Problems/A2"

(Created page with "== Problem == (''Bulgaria'') Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition <cmath>f(m+n)\ge f(m)+f(f(n))−1</cmath> for all <mat...")
 
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
(''Bulgaria'')
 
(''Bulgaria'')
 
Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition
 
Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition
<cmath>f(m+n)\ge f(m)+f(f(n))−1</cmath>
+
<center><math>f(m+n)\ge f(m)+f(f(n))-1</math></center>
for all <math>m</math>, <math>n </math>\in\mathbb{N}<math>. Find all possible values of </math>f(2007)<math>.
+
for all <math>m, n\in\mathbb{N}</math>. Find all possible values of <math>f(2007).</math>
(</math>\mathbb{N}$ denotes the set of all positive integers.)
+
 
 +
(<math>\mathbb{N}</math> denotes the set of all integers.)
 +
 
 +
== Solution ==

Latest revision as of 07:30, 3 August 2023

Problem

(Bulgaria) Consider those functions $f:\mathbb{N}\to\mathbb{N}$ which satisfy the condition

$f(m+n)\ge f(m)+f(f(n))-1$

for all $m, n\in\mathbb{N}$. Find all possible values of $f(2007).$

($\mathbb{N}$ denotes the set of all integers.)

Solution