Difference between revisions of "User:Tonypr"

Line 4: Line 4:
 
Proof <math>2=1</math>:
 
Proof <math>2=1</math>:
  
Let <math>a=b</math>
 
  
<center> <math>a^2=ab</math> </center>  
+
Suppose that <math>a=b</math>
  
<center> <math>a^2-b^2=ab-b^2</math></center>
+
<math>
 
+
\begin{eqnarray*}
<center> <math>(a-b)(a+b)=b(a-b)</math></center>
+
a&=&b\
 
+
a^2&=&ab\
<center> <math>a+b=b</math></center>
+
a^2-b^2&=&ab-b^2\
 
+
(a+b)(a-b)&=&b(a-b)\
<center> <math>b+b=b</math></center>
+
a+b&=&b\
 
+
b+b&=&b\
<center> <math>2b=b</math></center>
+
2b&=&b\
 
+
2&=&1
<center> <math>2=1</math></center>
+
\end{eqnarray*}
 +
</math>

Revision as of 22:39, 23 May 2009

Awesome math solver from Puerto Rico, soon to be International Math Olympiad.


Proof $2=1$:


Suppose that $a=b$

$a=ba2=aba2b2=abb2(a+b)(ab)=b(ab)a+b=bb+b=b2b=b2=1$ (Error compiling LaTeX. Unknown error_msg)