Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 8"
m |
|||
Line 14: | Line 14: | ||
<math>\angle BPE=75+60^\circ=180^\circ-2\angle PBE\implies \angle PBE=\frac{45}{2}</math>. <math>\angle ABE=\angle ABP+\angle PBE=45+\frac{45}{2}^\circ=\frac{135}{2}^\circ\implies m+n=\boxed{137}</math>. | <math>\angle BPE=75+60^\circ=180^\circ-2\angle PBE\implies \angle PBE=\frac{45}{2}</math>. <math>\angle ABE=\angle ABP+\angle PBE=45+\frac{45}{2}^\circ=\frac{135}{2}^\circ\implies m+n=\boxed{137}</math>. | ||
− | *[[Mock AIME 1 2006-2007/Problem 7 | Previous Problem]] | + | *[[Mock AIME 1 2006-2007 Problems/Problem 7 | Previous Problem]] |
− | *[[Mock AIME 1 2006-2007/Problem 9 | Next Problem]] | + | *[[Mock AIME 1 2006-2007 Problems/Problem 9 | Next Problem]] |
*[[Mock AIME 1 2006-2007]] | *[[Mock AIME 1 2006-2007]] |
Revision as of 14:52, 3 April 2012
Problem
Let be a convex pentagon with , , , and . If where and are relatively prime positive integers, find .
Solution
Let be a point in such that . We see that and thus . Since , we have that is a rhombus. Therefore so . Since we have that is equilateral.
. .