Difference between revisions of "1985 AJHSME Problem 9"

(Created page with "== Problem == The product of the 9 factors <math>\Big(1 - \frac12\Big)\Big(1 - \frac13\Big)\Big(1 - \frac14\Big)\cdots\Big(1 - \frac {1}{10}\Big) =</math> <math>\text{(A)}\ \...")
 
(Solution)
Line 3: Line 3:
  
 
<math>\text{(A)}\ \frac {1}{10} \qquad \text{(B)}\ \frac {1}{9} \qquad \text{(C)}\ \frac {1}{2} \qquad \text{(D)}\ \frac {10}{11} \qquad \text{(E)}\ \frac {11}{2}</math>
 
<math>\text{(A)}\ \frac {1}{10} \qquad \text{(B)}\ \frac {1}{9} \qquad \text{(C)}\ \frac {1}{2} \qquad \text{(D)}\ \frac {10}{11} \qquad \text{(E)}\ \frac {11}{2}</math>
 +
 +
== In-depth Solution by Boundless Brain!==
 +
https://youtu.be/yBrLXnjasgg
  
 
== Solution ==
 
== Solution ==

Revision as of 22:50, 29 June 2023

Problem

The product of the 9 factors $\Big(1 - \frac12\Big)\Big(1 - \frac13\Big)\Big(1 - \frac14\Big)\cdots\Big(1 - \frac {1}{10}\Big) =$

$\text{(A)}\ \frac {1}{10} \qquad \text{(B)}\ \frac {1}{9} \qquad \text{(C)}\ \frac {1}{2} \qquad \text{(D)}\ \frac {10}{11} \qquad \text{(E)}\ \frac {11}{2}$

In-depth Solution by Boundless Brain!

https://youtu.be/yBrLXnjasgg

Solution

This product simplifies to: \[\frac{1}{2} \cdot \frac{2}{3} \dots \frac{9}{10}.\] Numerators and denominators cancel to yield the answer: $\boxed{\text{(A)} \frac{1}{10}}.$