Difference between revisions of "2021 AIME I Problems/Problem 10"
Sugar rush (talk | contribs) |
Sugar rush (talk | contribs) |
||
Line 8: | Line 8: | ||
==See also== | ==See also== | ||
{{AIME box|year=2021|n=I|num-b=9|num-a=11}} | {{AIME box|year=2021|n=I|num-b=9|num-a=11}} | ||
+ | |||
+ | [[Category:Intermediate Number Theory Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:12, 11 March 2021
Problem
Consider the sequence of positive rational numbers defined by and for , if for relatively prime positive integers and , then
Determine the sum of all positive integers such that the rational number can be written in the form for some positive integer .
Solution
We know that when so is a possible value of . Note also that for . Then unless and are not relatively prime which happens when divides or divides , so the least value of is and . We know . Now unless and are not relatively prime which happens the first time divides or divides or , and . We have . Now unless and are not relatively prime. This happens the first time divides implying divides , which is prime so and . We have . We have , which is always reduced by EA, so the sum of all is .
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.