Difference between revisions of "2006 IMO Problems/Problem 6"
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Assign to each side <math>b</math> of a convex polygon <math>P</math> the maximum area of a triangle that has <math>b</math> as a side and is contained in <math>P</math>. Show that the sum of the areas assigned to the sides of <math>P</math> is at least twice the area of <math>P</math>. | Assign to each side <math>b</math> of a convex polygon <math>P</math> the maximum area of a triangle that has <math>b</math> as a side and is contained in <math>P</math>. Show that the sum of the areas assigned to the sides of <math>P</math> is at least twice the area of <math>P</math>. | ||
+ | |||
+ | ==Solution== | ||
+ | {{solution}} | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{IMO box|year=2006|num-b=5|after=Last Problem}} |
Revision as of 00:04, 19 November 2023
Problem
Assign to each side of a convex polygon the maximum area of a triangle that has as a side and is contained in . Show that the sum of the areas assigned to the sides of is at least twice the area of .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2006 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Problem |
All IMO Problems and Solutions |