Difference between revisions of "2001 IMO Problems/Problem 2"
(→Alternate Solution using Jensen's: fix function) |
(Reword solution) |
||
Line 10: | Line 10: | ||
Which is obviously true since <math>(a+b)(b+c)(c+a)\ge 8abc</math>. | Which is obviously true since <math>(a+b)(b+c)(c+a)\ge 8abc</math>. | ||
===Alternate Solution using Jensen's=== | ===Alternate Solution using Jensen's=== | ||
− | + | This inequality is homogeneous so we can assume without loss of generality <math>a+b+c=1</math> and apply Jensen's inequality for <math>f(x)=\frac{1}{\sqrt{x}}</math>, so we get: | |
− | < | + | <cmath>\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{b}{\sqrt{b^2+8ac}} \geq \frac{1}{\sqrt{a^3+b^3+c^3+24abc}}</cmath> |
− | + | but | |
− | + | <cmath>1=(a+b+c)^3=a^3+b^3+c^3+6abc+3(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b) \geq a^3+b^3+c^3+24abc</cmath>, and thus the inequality is proven. |
Revision as of 19:44, 23 November 2007
Problem
Let be positive real numbers. Prove that
Solution
Solution using Holder's
By Holder's inequality, Thus we need only show that Which is obviously true since .
Alternate Solution using Jensen's
This inequality is homogeneous so we can assume without loss of generality and apply Jensen's inequality for , so we get: but , and thus the inequality is proven.