Difference between revisions of "1983 AHSME Problems/Problem 8"

(Created page with "== Problem 8 == Let <math>f(x) = \frac{x+1}{x-1}</math>. Then for <math>x^2 \neq 1, f(-x)</math> is <math>\textbf{(A)}\ \frac{1}{f(x)}\qquad \textbf{(B)}\ -f(x)\qquad \textb...")
 
m (Slightly cleaned up and added more explanation to the solution)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
<math>\frac{-x+1}{-x-1}\implies\frac{x-1}{x+1}=\frac{1}{f(x)}</math>, <math>\fbox{A}</math>
+
We find <math>f(-x) = \frac{-x+1}{-x-1} = \frac{x-1}{x+1} = \frac{1}{f(x)}</math>, so the answer is <math>\fbox{A}</math>.

Revision as of 17:37, 26 January 2019

Problem 8

Let $f(x) = \frac{x+1}{x-1}$. Then for $x^2 \neq 1, f(-x)$ is

$\textbf{(A)}\ \frac{1}{f(x)}\qquad \textbf{(B)}\ -f(x)\qquad \textbf{(C)}\ \frac{1}{f(-x)}\qquad \textbf{(D)}\ -f(-x)\qquad \textbf{(E)}\ f(x)$

Solution

We find $f(-x) = \frac{-x+1}{-x-1} = \frac{x-1}{x+1} = \frac{1}{f(x)}$, so the answer is $\fbox{A}$.