Difference between revisions of "2022 AMC 12B Problems/Problem 24"
(Created page with "==Problem== The figure below depicts a regular 7-gon inscribed in a unit circle. What is the sum of the 4th powers of the lengths of all 21 of its edges and diagonals? ==So...") |
|||
Line 65: | Line 65: | ||
& = -1 . | & = -1 . | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | ==Solution (Trig approach)== | ||
+ | |||
+ | There are 7 segments whose lengths are <math>2 \sin \frac{\pi}{7}</math>, 7 segments whose lengths are <math>2 \sin \frac{2 \pi}{7}</math>, 7 segments whose lengths are <math>2 \sin \frac{3\pi}{7}</math>. | ||
+ | |||
+ | Therefore, the sum of the 4th powers of these lengths is | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | & 7 \cdot 2^4 \sin^4 \frac{\pi}{7} | ||
+ | + 7 \cdot 2^4 \sin^4 \frac{2 \pi}{7} | ||
+ | + 7 \cdot 2^4 \sin^4 \frac{3 \pi}{7} \\ | ||
+ | & = 7 \cdot 2^4 \left( \frac{1 - \cos \frac{2 \pi}{7}}{2} \right)^2 | ||
+ | + 7 \cdot 2^4 \left( \frac{1 - \cos \frac{4 \pi}{7}}{2} \right)^2 | ||
+ | + 7 \cdot 2^4 \left( \frac{1 - \cos \frac{6 \pi}{7}}{2} \right)^2 \\ | ||
+ | & = 7 \cdot 2^2 \left( 1 - 2 \cos \frac{2 \pi}{7} + \cos^2 \frac{2 \pi}{7} \right) | ||
+ | + 7 \cdot 2^2 \left( 1 - 2 \cos \frac{4 \pi}{7} + \cos^2 \frac{4 \pi}{7} \right) | ||
+ | + 7 \cdot 2^2 \left( 1 - 2 \cos \frac{6 \pi}{7} + \cos^2 \frac{6 \pi}{7} \right) \\ | ||
+ | & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} | ||
+ | + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) | ||
+ | + 7 \cdot 2^2 \left( \cos^2 \frac{2 \pi}{7} | ||
+ | + \cos^2 \frac{4 \pi}{7} + \cos^2 \frac{6 \pi}{7} \right) \\ | ||
+ | & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} | ||
+ | + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) | ||
+ | + 7 \cdot 2^2 \left( \frac{1 + \cos \frac{4 \pi}{7} }{2} | ||
+ | + \frac{1 + \cos \frac{8 \pi}{7} }{2} + \frac{1 + \cos \frac{12 \pi}{7} }{2} \right) \\ | ||
+ | & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} | ||
+ | + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) | ||
+ | + 7 \cdot 2 \cdot 3 + 7 \cdot 2 \left( \cos \frac{4 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{12 \pi}{7} \right) \\ | ||
+ | & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} | ||
+ | + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) | ||
+ | + 7 \cdot 2 \cdot 3 + 7 \cdot 2 \left( \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{2 \pi}{7} \right) \\ | ||
+ | & = 7 \cdot 2 \cdot 3 \left( 2 + 1 \right) | ||
+ | - 7 \cdot 2 \left( 4 - 1 \right) \left( \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{2 \pi}{7} \right) \\ | ||
+ | & = 7 \cdot 2 \cdot 3 \left( 2 + 1 \right) | ||
+ | - 7 \cdot 2 \left( 4 - 1 \right) \cdot \left( - \frac{1}{2} \right) \\ | ||
+ | & = \boxed{\textbf{(C) 147}} , | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | where the second from the last equality follows from the property that | ||
+ | <cmath> | ||
+ | \[ | ||
+ | \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{2 \pi}{7} | ||
+ | = - \frac{1}{2} . | ||
+ | \] | ||
</cmath> | </cmath> | ||
Revision as of 14:38, 17 November 2022
Contents
Problem
The figure below depicts a regular 7-gon inscribed in a unit circle.
What is the sum of the 4th powers of the lengths of all 21 of its edges and diagonals?
Solution (Complex numbers approach)
There are 7 segments whose lengths are , 7 segments whose lengths are , 7 segments whose lengths are .
Therefore, the sum of the 4th powers of these lengths is where the fourth from the last equality follows from the property that
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution (Trig approach)
There are 7 segments whose lengths are , 7 segments whose lengths are , 7 segments whose lengths are .
Therefore, the sum of the 4th powers of these lengths is where the second from the last equality follows from the property that
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)