Difference between revisions of "User:Zhoujef000"

(1434)
(1434)
 
Line 1: Line 1:
 
test
 
test
 
==1434==
 
==1434==
xonk
+
xonk (-1434 MOHS FE)
 +
 
 
Find all functions <math>f: \mathbb{R} \to \mathbb{R}</math> such that<cmath>f(xonkrbo)=xonkrbo</cmath>for all real numbers <math>x,o,n,k,r,</math> and <math>b.</math>
 
Find all functions <math>f: \mathbb{R} \to \mathbb{R}</math> such that<cmath>f(xonkrbo)=xonkrbo</cmath>for all real numbers <math>x,o,n,k,r,</math> and <math>b.</math>
  

Latest revision as of 11:16, 29 April 2024

test

1434

xonk (-1434 MOHS FE)

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that\[f(xonkrbo)=xonkrbo\]for all real numbers $x,o,n,k,r,$ and $b.$

Let $A$ be the set of positive real numbers. Determine, with proof, if there exists at least one function $f : A\to A$ such that\[f(x^x)=f(x)^{f(x)}\]for all real $x$ in $A.$

Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such\[f(x+y)=f(y)\]for all real numbers $x$ and $y.$

Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that\[f\left(x+\dfrac{1}{x}\right)+f\left(y+\dfrac{1}{y}\right)+f\left(z+\dfrac{1}{z}\right)=1\]for all real numbers $x,y,z\neq 0.$