2021 AIME I Problems/Problem 13
Problem
Circles and
with radii
and
, respectively, intersect at distinct points
and
. A third circle
is externally tangent to both
and
. Suppose line
intersects
at two points
and
such that the measure of minor arc
is
. Find the distance between the centers of
and
.
Solution
Let and
be the center and radius of
, and let
and
be the center and radius of
.
Since extends to an arc with arc
, the distance from
to
is
. Let
. Consider
. The line
is perpendicular to
and passes through
. Let
be the foot from
to
; so
. We have by tangency
and
. Let
.
Since
is on the radical axis of
and
, it has equal power with respect to both circles, so
since
. Now we can solve for
and
, and in particular,
We want to solve for
. By the Pythagorean Theorem (twice):
Therefore,
.
Solution 2 (Official MAA, Unedited)
Denote by ,
, and
the centers of
,
, and
, respectively. Let
and
denote the radii of
and
respectively,
be the radius of
, and
the distance from
to the line
. We claim that
where
. This solves the problem, for then the
condition implies
, and then we can solve to get
.
Denote by and
the centers of
and
respectively. Set
as the projection of
onto
, and denote by
the intersection of
with
. Note that
. Now recall that
Furthermore, note that
Substituting the first equality into the second one and subtracting yields
which rearranges to the desired.
Video Solution
Who wanted to see animated video solutions can see this. I found this really helpful.
P.S: This video is not made by me .And solution is same like below solutions.
≈@rounak138
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.