For over 15 years, our Textbooks and Online School have been the cornerstone of the mathematical training of many of the top students in the world. Check out our schedule of upcoming classes to find a class that's right for you!

LaTeX:Symbols

Revision as of 22:07, 12 July 2007 by Chris_bayhill (talk | contribs) (Multi-Size Symbols)
LaTeX
About - Getting Started - Diagrams - Symbols - Downloads - Basics - Math - Examples - Pictures - Layout - Commands - Packages - Help

This article will provide a short list of commonly used LaTeX symbols.

Operators

Symbol Command Symbol Command Symbol Command
$\pm$ \pm $\mp$ \mp $\times$ \times
$\div$ \div $\cdot$ \cdot $\ast$ \ast
$\star$ \star $\dagger$ \dagger $\ddagger$ \ddagger
$\amalg$ \amalg $\cap$ \cap $\cup$ \cup
$\uplus$ \uplus $\sqcap$ \sqcap $\sqcup$ \sqcup
$\vee$ \vee $\wedge$ \wedge $\oplus$ \oplus
$\ominus$ \ominus $\otimes$ \otimes $\circ$ \circ
$\bullet$ \bullet $\diamond$ \diamond $\lhd$ \lhd
$\rhd$ \rhd $\unlhd$ \unlhd $\unrhd$ \unrhd
$\oslash$ \oslash $\odot$ \odot $\bigcirc$ \bigcirc
$\triangleleft$ \triangleleft $\Diamond$ \Diamond $\bigtriangleup$ \bigtriangleup
$\bigtriangledown$ \bigtriangledown $\Box$ \Box $\triangleright$ \triangleright
$\setminus$ \setminus $\wr$ \wr

Relations

Symbol Command Symbol Command Symbol Command
$\le$ \le $\ge$ \ge $\neq$ \neq
$\sim$ \sim $\ll$ \ll $\gg$ \gg
$\doteq$ \doteq $\simeq$ \simeq $\subset$ \subset
$\supset$ \supset $\approx$ \approx $\asymp$ \asymp
$\subseteq$ \subseteq $\supseteq$ \supseteq $\cong$ \cong
$\smile$ \smile $\sqsubset$ \sqsubset $\sqsupset$ \sqsupset
$\equiv$ \equiv $\frown$ \frown $\sqsubseteq$ \sqsubseteq
$\sqsupseteq$ \sqsupseteq $\propto$ \propto $\bowtie$ \bowtie
$\in$ \in $\ni$ \ni $\prec$ \prec
$\succ$ \succ $\vdash$ \vdash $\dashv$ \dashv
$\preceq$ \preceq $\succeq$ \succeq $\models$ \models
$\perp$ \perp $\parallel$ \parallel $\|$ \|
$\mid$ \mid

Negations of many of these relations can be formed by just putting \not before the symbol, or by slipping an n between the \ and the word. Here are a few examples, plus a few other negations; it works for many of the others as well.

Symbol Command Symbol Command Symbol Command
$\nmid$ \nmid $\nleq$ \nleq $\ngeq$ \ngeq
$\nsim$ \nsim $\ncong$ \ncong $\nparallel$ \nparallel
$\not<$ \not< $\not>$ \not> $\not=$ \not=
$\not\le$ \not\le $\not\ge$ \not\ge $\not\sim$ \not\sim
$\not \approx$ \not\approx $\not\cong$ \not\cong $\not\equiv$ \not\equiv
$\not\parallel$ \not\parallel $\nless$ \nless $\ngtr$ \ngtr
$\lneq$ \lneq $\gneq$ \gneq $\lnsim$ \lnsim
$\lneqq$ \lneqq $\gneqq$ \gneqq

Greek Letters

Lowercase Letters
Symbol Command Symbol Command Symbol Command Symbol Command
$\alpha$ \alpha $\beta$ \beta $\gamma$ \gamma $\delta$ \delta
$\epsilon$ \epsilon $\varepsilon$ \varepsilon $\zeta$ \zeta $\eta$ \eta
$\theta$ \theta $\vartheta$ \vartheta $\iota$ \iota $\kappa$ \kappa
$\lambda$ \lambda $\mu$ \mu $\nu$ \nu $\xi$ \xi
$\pi$ \pi $\varpi$ \varpi $\rho$ \rho $\varrho$ \varrho
$\sigma$ \sigma $\varsigma$ \varsigma $\tau$ \tau $\upsilon$ \upsilon
$\phi$ \phi $\varphi$ \varphi $\chi$ \chi $\psi$ \psi
$\omega$ \omega


Capital Letters
Symbol Command Symbol Command Symbol Command Symbol Command
$\Gamma$ \Gamma $\Delta$ \Delta $\Theta$ \Theta $\Lambda$ \Lambda
$\Xi$ \Xi $\Pi$ \Pi $\Sigma$ \Sigma $\Upsilon$ \Upsilon
$\Phi$ \Phi $\Psi$ \Psi

Arrows

Symbol Command Symbol Command
$\gets$ \gets $\to$ \to
$\leftarrow$ \leftarrow $\Leftarrow$ \Leftarrow
$\rightarrow$ \rightarrow $\Rightarrow$ \Rightarrow
$\leftrightarrow$ \leftrightarrow $\Leftrightarrow$ \Leftrightarrow
$\mapsto$ \mapsto $\hookleftarrow$ \hookleftarrow
$\leftharpoonup$ \leftharpoonup $\leftharpoondown$ \leftharpoondown
$\rightleftharpoons$ \rightleftharpoons $\longleftarrow$ \longleftarrow
$\Longleftarrow$ \Longleftarrow $\longrightarrow$ \longrightarrow
$\Longrightarrow$ \Longrightarrow $\longleftrightarrow$ \longleftrightarrow
$\Longleftrightarrow$ \Longleftrightarrow $\longmapsto$ \longmapsto
$\hookrightarrow$ \hookrightarrow $\rightharpoonup$ \rightharpoonup
$\rightharpoondown$ \rightharpoondown $\leadsto$ \leadsto
$\uparrow$ \uparrow $\Uparrow$ \Uparrow
$\downarrow$ \downarrow $\Downarrow$ \Downarrow
$\updownarrow$ \updownarrow $\Updownarrow$ \Updownarrow
$\nearrow$ \nearrow $\searrow$ \searrow
$\swarrow$ \swarrow $\nwarrow$ \nwarrow

Dots

Symbol Command Symbol Command Symbol Command Symbol Command
$\ldots 2$ \ldots 2 $\vdots$ \vdots $\cdots 2$ \cdots 2 $\ddots$ \ddots

(The '2's after \ldots and \cdots are only present to make the distinction between the two clear.)

Accents

Symbol Command Symbol Command Symbol Command
$\hat{x}$ \hat{x} $\check{x}$ \check{x} $\dot{x}$ \dot{x}
$\breve{x}$ \breve{x} $\acute{x}$ \acute{x} $\ddot{x}$ \ddot{x}
$\grave{x}$ \grave{x} $\tilde{x}$ \tilde{x} $\mathring{x}$ \mathring{x}
\$\bar{x}$ \bar{x} $\vec{x}$ \vec{x}

When applying accents to i and j, you can use \imath and \jmath to keep the dots from interfering with the accents:

Symbol Command Symbol Command
$\vec{\jmath}$ \vec{\jmath} $\tilde{\imath}$ \tilde{\imath}

\tilde and \hat have wide versions that allow you to accent an expression:

Symbol Command Symbol Command
$\widehat{3+x}$ \widehat{3+x} $\widetilde{abc}$ \widetilde{abc}

Others

Symbol Command Symbol Command Symbol Command
$\infty$ \infty $\triangle$ \triangle $\angle$ \angle
$\aleph$ \aleph $\hbar$ \hbar $\imath$ \imath
$\jmath$ \jmath $\ell$ \ell $\wp$ \wp
$\Re$ \Re $\Im$ \Im $\mho$ \mho
$\prime$ \prime $\emptyset$ \emptyset $\nabla$ \nabla
$\surd$ \surd $\partial$ \partial $\top$ \top
$\bot$ \bot $\vdash$ \vdash $\dashv$ \dashv
$\forall$ \forall $\exists$ \exists $\neg$ \neg
$\flat$ \flat $\natural$ \natural $\sharp$ \sharp
$\backslash$ \backslash $\Box$ \Box $\Diamond$ \Diamond
$\clubsuit$ \clubsuit $\diamondsuit$ \diamondsuit $\heartsuit$ \heartsuit
$\spadesuit$ \spadesuit $\Join$ \Join $\blacksquare$ \blacksquare

Bracketing Symbols

In mathematics, sometimes we need to enclose expressions in brackets or braces or parentheses. Some of these work just as you'd imagine in LaTeX; type ( and ) for parentheses, [ and ] for brackets, and | and | for absolute value. However, other symbols have special commands:

Symbol Command Symbol Command Symbol Command
$\{$ \{ $\}$ \} $\|$ \|
$\backslash$ \backslash $\lfloor$ \lfloor $\rfloor$ \rfloor
$\lceil$ \lceil $\rceil$ \rceil $\langle$ \langle
$\rangle$ \rangle

You might notice that if you use any of these to typeset an expression that is vertically large, like

\displaystyle (1 + \frac{a}{x} )^2

the parentheses don't come out the right size:

Badparen1.gif

If we put \left and \right before the relevant parentheses, we get a prettier expression:

\displaystyle \left(1 + \frac{a}{x} \right)^2

gives

$\left(1 + \frac{a}{x} \right)^2$

\left and \right can also be used to resize the following symbols:

Symbol Command Symbol Command Symbol Command
$\uparrow$ \uparrow $\downarrow$ \downarrow $\updownarrow$ \updownarrow
$\Uparrow$ \Uparrow $\Downarrow$ \Downarrow $\Updownarrow$ \Updownarrow

Multi-Size Symbols

Some symbols render differently in regular math mode and in display mode (display mode occurs when you use \displaystyle, $$...$$, or \[...\]). Read more in the commands section of the guide about how symbols which take arguments above and below the symbols, such as a summation symbol, behave in the two modes.

In each of the following, the two images show the symbol in regular mode, then in display mode.

Symbol Command Symbol Command Symbol Command
$\textstyle\sum   \displaystyle\sum$ \sum $\textstyle\int   \displaystyle\int$ \int $\textstyle\oint   \displaystyle\oint$ \oint
$\textstyle\prod   \displaystyle\prod$ \prod $\textstyle\coprod   \displaystyle\coprod$ \coprod $\textstyle\bigcap   \displaystyle\bigcap$ \bigcap
$\textstyle\bigcup   \displaystyle\bigcup$ \bigcup $\textstyle\bigsqcup   \displaystyle\bigsqcup$ \bigsqcup $\textstyle\bigvee   \displaystyle\bigvee$ \bigvee
$\textstyle\bigwedge   \displaystyle\bigwedge$ \bigwedge $\textstyle\bigodot   \displaystyle\bigodot$ \bigodot $\textstyle\bigotimes   \displaystyle\bigotimes$ \bigotimes
$\textstyle\bigoplus   \displaystyle\bigoplus$ \bigoplus $\textstyle\biguplus   \displaystyle\biguplus$ \biguplus



\boxed{Answer} produces a box around your Answer.

\frac{a}{b} produces a fraction with numerator $a$ and denominator $b$. $\frac{a}{b}$

^\circ produces the degrees symbol. $a^{\circ}$

\text{Your Text Here} produces text within LaTeX. $\mbox{Your Text Here}$.

\mbox{Your Text Here} Produces text within LaTeX $\mbox{Your Text Here}$

\sqrt{x} produces the square root of $x$. $\sqrt{x}$

\sqrt[n]{x} produces the $n$th root of $x$. $\sqrt[n]{x}$

a\equiv b \pmod{c} produces $a$ is equivalent to $b$ mod $c$. $a\equiv b \pmod{c}$ See Modular Arithmetic

\binom{9}{3} produces 9 choose 3.

{n}\choose{r} produces n choose r. ${n}\choose{r}$

x^{y} produces x to the power of y. $x^y$

x_{y} produces x with y in subscript. $x_y$

\rightarrow produces an arrow to the right. $\rightarrow$

\leftarrow produces an arrow to the left. $\leftarrow$

\uparrow produces an arrow pointing upwards. $\uparrow$

\downarrow produces an arrow pointing downwards. $\downarrow$

\updownarrow produces an arrow pointing up and down. $\updownarrow$

\ge produces a greater than or equal to sign. $\ge$

\le produces a less than or equal to sign. $\le$

\not> produces a not greater than sign. $\not>$

\not< produces a not less than sign. $\not<$

\not\ge produces a not greater than or equal to sign. $\not\ge$

\not\le produces a not less than or equal to sign. $\not\le$

\neq produces a not equal to sign. $\neq$

\infty produces an infinity sign. $\infty$

\perp produces a perpendicular sign. $\perp$

\angle produces an angle sign. $\angle$

\triangle produces a triangle. $\triangle$

\ldots produces three dots at the bottom of a line (ellipsis). $\ldots$

\cdots produces three dots in the middle of a line (as in a series sum or product). $\cdots$

\times produces an $\times$ as used in multiplication

\otimes produces a $\otimes$

Also note that you do not have to use braces, "{" and "}", when you only want one character in the operation.

Examples

  • x^y is the same as x^{y}. $x^y$
  • x_y is the same as x_{y}. $x_y$
  • BUT x^10 is not the same as x^{10}. $x^10$ instead of $x^{10}$.


See Also